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Introduction



Motivation
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Motivation
• Similarity / distance judgments are essential components of many human
cognitive processes (see e.g., [Tversky, 1977])

• Compare perceptual or conceptual representations
• Perform recognition, categorization...

• Underlie most ML and data mining techniques: k-means, clustering ...
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Motivation
Information Retrieval
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Motivation
Data Visualization
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Motivation

• Choice of similarity is crucial to the performance
• Humans weight features differently depending on context

• Facial recognition vs. determining facial expression

• Fundamental question: how to appropriately measure similarity or distance
for a given task?

• Metric learning = infer the similarity or distance automatically from data
• Note: we will refer to distance or similarity indistinctly as metric
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Basic idea of metric learning
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Basic recipe for metric learning
1. Choose a parametric distance or similarity function

• Say, a distance 𝐷M(x, x′) function parameterized by M
2. Collect similarity constrains on data pairs/triplets of the following forms:

• Must-link/cannot-link constraints (sometimes called positive/negative pairs):

𝒮 = {(x𝑖, x𝑗) ∶ x𝑖 and x𝑗should be similar},
𝒟 = {(x𝑖, x𝑗) ∶ x𝑖 and x𝑗should be dissimilar},

• Relative constraints (sometimes called training triplets):

ℛ = {(x𝑖, x𝑗, x𝑘) ∶ x𝑖 should be more similar to x𝑗 than to x𝑘}.

3. Design a loss function: ℓ(M, 𝒮, 𝒟, ℛ) (a penalty when training constraints are
violated), a regularizer: 𝑅(M) and choose a regularization parameter 𝜆 > 0.

4. Learning: (estimate parameters s.t. metric best agrees with constraints)

M𝑏𝑒𝑠𝑡 = min
M

[ℓ(M, 𝒮, 𝒟, ℛ) + 𝜆𝑅(M)]
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Some examples of DML algorithms



Some examples of DML algorithms

Linear matrix learning



Mahalanobis distance
• Mahalanobis distance to refer to generalized quadratic distances, defined as

𝑑M(x, x′) = √(x − x′)𝑇 M(x − x′)
and parameterized by M ∈ 𝕊𝑑

+, where 𝕊𝑑
+ is the cone of symmetric positive

semi-definite (PSD) 𝑑 × 𝑑 real-valued matrices.
• If M ∈ 𝕊𝑑

+, then 𝑑M satisfies the properties of a pseudo-distance.

M ∈ 𝕊𝑑
+ (also denote M ⪰ 0) iff

• Its eigenvalues are all nonnegative
• x𝑇 M𝑇 x ≥ 0, for all x ∈ R𝑑

• M = LL𝑇 , where L ∈ ℝ𝑘×𝑑 and 𝑘 is
the rank of M
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• Note that when M is the identity matrix, we recover the Euclidean distance.
• Otherwise, M = LL𝑇 , where L ∈ ℝ𝑘×𝑑 and 𝑘 is the rank of M. We can then
rewrite 𝑑M(x, x′) as follows:

𝑑M(x, x′) = √(x − x′)𝑇 M(x − x′) = √(x − x′)𝑇 L𝑇 L(x − x′)
= √(Lx − Lx′)𝑇 (Lx − Lx′)

Thus, a Mahalanobis distance implicitly corresponds to computing the Euclidean
distance after the linear projection of the data defined by the transformation
matrix L
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Learning Mahalanobis distance
The goal is to adapt some pairwise real-valued metric function:

𝑑M(x, x′) = √(x − x′)𝑇 M(x − x′)
to the problem of interest using the information brought by training examples

The existing methods learn the positive semi-definite matrix M in 𝑑M.
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Learning Mahalanobis distance
Optimisation model:
min

M
𝑓(M) = ∑

(x𝑖,x𝑗)∈𝒮
𝑑2

M(x𝑖, x𝑗) (1)

𝑠.𝑡. 𝑔(M) = ∑
(x𝑖,x𝑗)∈𝒟

𝑑M(x𝑖, x𝑗) ≥ 1 (2)

M ⪰ 0 (3)

If M = 𝑑𝑖𝑎𝑔(𝑚1, ⋯ , 𝑚𝑑), the problem is
equivalent to:

min
M

𝐹(M) = 𝑓(M) − ln(𝑔(M))

𝑠.𝑡. M ⪰ 0

(The Newton-Raphson method)

Alternative model:
max

M
𝑔(M) = ∑

(x𝑖,x𝑗)∈𝒟
𝑑M(x𝑖, x𝑗)

𝑠.𝑡. M ∈ 𝒫 and M ∈ 𝕊𝑑
+

where 𝒫 = {M ∶ 𝑓(M) ≤ 1}.
Gradient ascent iterative method:
Projection steps:
M1 = argmin

M′
{‖M′ − M‖𝐹 ∶ M′ ∈ 𝒫}

M2 = argmin
M′

{‖M′ − M1‖𝐹 ∶ M′ ∈ 𝕊𝑑
+}

Gradient ascent step:
M = M2 + 𝛼(∇M𝑔(M2))⊥∇M𝑓
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projected gradient descent
• Project onto distance constraint: 𝑂(𝑑2) steps
• Project onto 𝕊𝑑

+: 𝑂(𝑑3) steps
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Learning with triplet constraints
Target: information retrieval [Schultz and Joachims, 2003]

Model

min
M∈𝕊+

𝑑,�≥0
∑
𝑖,𝑗,𝑘

𝜉𝑖,𝑗,𝑘 + 𝜆‖M‖2
𝐹

𝑠.𝑡. 𝑑2
M(x𝑖, x𝑘) − 𝑑2

M(x𝑖, x𝑗) ≥ 𝜉𝑖,𝑗,𝑘 for all (x𝑖, x𝑗, x𝑘) ∈ ℛ

• Regularization by Frobenius norm ‖M‖2
𝐹 = ∑ 𝑚2

𝑖𝑗

• Formulation is convex
• One large margin soft constraint per triplet
• Can be solved with similar techniques as SVM
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Some examples of DML algorithms

Large Margin Nearest Neighbor



Large Margin Nearest Neighbor
• Constraints: derived from labeled data

𝒮 = {(x𝑖, x𝑗) ∶ 𝑦𝑖 = 𝑦𝑗, x𝑗 belongs to 𝑘-nearest neightborhood of x𝑖}
ℛ = {(x𝑖, x𝑗, x𝑘) ∶ (x𝑖, x𝑗) ∈ 𝒮, 𝑦𝑘 ≠ 𝑦𝑖}
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Large Margin Nearest Neighbor
Target task: k-NN classification [Weinberger et al., 2005]

Model

min
M∈𝕊+

𝑑,�≥0
(1 − 𝜇) ∑

(x𝑖,x𝑗)∈𝒮
𝑑2

M(x𝑖, x𝑗) + 𝜇 ∑
𝑖,𝑗,𝑘

𝜉𝑖,𝑗,𝑘

𝑠.𝑡. 𝑑2
M(x𝑖, x𝑘) − 𝑑2

M(x𝑖, x𝑗) ≥ 𝜉𝑖,𝑗,𝑘 for all (x𝑖, x𝑗, x𝑘) ∈ ℛ

𝜇 ∈ [0, 1] is the trade-off parameter
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Mahalanobis distance learning in other tasks

• Learning to rank [McFee and Lanckriet, 2010]
• Multi-task learning [Parameswaran and Weinberger, 2010]
• Transfer learning [Zhang and Yeung, 2010], [J Zhen, 2017]
• Semi-supervised learning [Hoi et al., 2008]
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Some examples of DML algorithms

Learning feature selection



Feature AwaRe Metric learning (Farm)

• Decouple the feature aware metric M̂ into a full metric M and a diagonal
weight separately as: �̂� = 𝑑𝑖𝑎𝑔(w)M 𝑑𝑖𝑎𝑔(w)

• Consequently, distance between x𝑖 and x𝑗 using new metric M̂:

𝑑𝑖𝑠𝑡M̂(x𝑖, x𝑗) = (x𝑖 − x𝑗)𝑇 𝑑𝑖𝑎𝑔(w)M 𝑑𝑖𝑎𝑔(w)(x𝑖 − x𝑗)

• Therefore, objective function of Farm method is:

min
M,w

∑
(x𝑖,x𝑗,x𝑘)∈ℛ

ℓ(𝑑𝑖𝑠𝑡2
M̂(x𝑖, x𝑘) − 𝑑𝑖𝑠𝑡2

M̂(x𝑖, x𝑗)) + 𝜆1Ω(M) + 𝜆2‖w‖1

where Ω is a regularizer and lost function ℓ() is a decreasing convex function.

MML’2023 Distance metric learning 20/48



Implementation detail
• The regularizer Ω on full metric component M is also flexible:

• when Ω(M) = ‖M‖2
𝐹 , it can be used to prevent overfitting;

• when Ω(M) = ‖M‖1, elements in M are also sparse.
• when Ω(M) = ‖M‖∗ = 𝑇 𝑟(

√
M∗ ⋅ M) (where M∗ is the Hermitian conjugate of

M), M should be low rank and sparse on principal components is forced, so
the combined metric M̂ is a sparse and low rank one.

• Lost function: ℓ(𝑥) =
⎧{{
⎨{{⎩

0 if 𝑥 ≥ 1
1/2 − 𝑥 if 𝑥 ≤ 0
1/2(1 − 𝑥)2 otherwise.

• Optimization strategy: alternative style, i.e., optimize on w with M fixed and
vice versa
1. Fix w and solve M:
2. Fix M and solve w:
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Some examples of DML algorithms

Nonlinear extension



Kernelization
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Kernelization

Definition (Kernel function)
A symmetric function 𝐾 is a kernel if there exists a mapping function 𝜙 ∶ 𝒳 → ℍ
from the instance space 𝒳 to a Hilbert space ℍ such that 𝐾 can be written as an
inner product in ℍ:

𝐾(𝑥, 𝑥′) = ⟨𝜙(𝑥), 𝜙(𝑥′)⟩

Equivalently, 𝐾 is a kernel if it is positive semi-definite (PSD), i.e.,
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑐𝑖𝑐𝑗𝐾(𝑥𝑖, 𝑥𝑗) ≥ 0

for all finite sequences of 𝑥1, ⋯ , 𝑥𝑛 ∈ 𝒳 and 𝑐1, ⋯ , 𝑐𝑛 ∈ ℝ.
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Kernelization

• Notations
• Kernel 𝐾(x, x′) = ⟨𝜙(x), 𝜙(x′)⟩, training data {x𝑖}𝑛

𝑖=1
• Let 𝜙𝑖 = 𝜙(x𝑖) ∈ ℝ𝐷, Φ = [𝜙1, ⋯ , 𝜙𝑛]ℝ𝑛×𝐷

• Mahalanobis distance in kernel space:

𝑑M(𝜙𝑖, 𝜙𝑗) = (𝜙𝑖 − 𝜙𝑗)𝑇 M(𝜙𝑖 − 𝜙𝑗) = (𝜙𝑖 − 𝜙𝑗)𝑇 L𝑇 L(𝜙𝑖 − 𝜙𝑗)

• Setting L𝑇 = ΦU𝑇 , where U ∈ ℝ𝐷×𝑛

𝑑2
M(𝜙(𝑥), 𝜙(𝑥′)) = (k − k′)𝑇 M(k − k′)

where M ∈ U𝑇 U ∈ ℝ𝑛×𝑛, k = Φ𝑇 𝜙(x) = [𝐾(x1, x), ⋯ , 𝐾(x𝑛, x)]𝑇

• Justified by a representer theorem [Chatpatanasiri et al., 2010]
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Kernelization

• Similar trick as kernel SVM
• Use a nonlinear kernel (e.g., Gaussian RBF)
• Inexpensive computations through the kernel
• Nonlinear metric learning while retaining convexity

• Need to learn 𝑂(𝑛2) parameters
• Linear metric learning algorithm must be kernelized

• Interface to data limited to inner products only
• Several algorithms shown to be kernelizable

• General trick [Chatpatanasiri et al., 2010]:
1. Kernel PCA: nonlinear mapping to low-dimensional space
2. Apply linear metric learning algorithm to transformed data
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Mathematical foundations of DML



General overview of the approaches to DML
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Convex Analysis

• Convex projection theorem: the distance from 𝑥 to a convex close set 𝐾 is
materialized in the point 𝑥0, which is called the projection of 𝑥 to 𝐾

• Convex optimization mechanisms:
– Gradient Descent method
– Project Gradient method
– Iterated Projections method
– Sub-gradient Descent method
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Matrix Analysis
• Matrix decomposition theorem for any matrix M ∈ 𝕊𝑑

+, there exists 𝐿 ∈ ℝ𝑑×𝑑

s.t. M = 𝐿𝑇 𝐿, and 𝐿 is unique except for an isometry
• Frobenius inner product: With the Frobenius product we convert the
matrices set in a Hilbert space, and therefore can apply the convex analysis
theory studied in the previous section.

• semidefinite programming: semidefinite projection theorem states that we
can compute the projection of a matrix onto the positive semidefinite cone
by performing an eigenvalue decomposition, nullifying the negative
eigenvalues and recomposing the matrix with the new eigenvalues

• PCA: principal components analysis

max
𝐿∈ℝ𝑑′×𝑑

𝑡𝑟(𝐿𝐴𝐿𝑇 ) 𝑠.𝑡. ∶ 𝐿𝐿𝑇 = 𝐼

where 𝐴 is a symmetric matrix of dimension 𝑑.
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Information Theory

• Mahalanobis distance: the generalization of Euclidean distance
• Other distances: Matusita, Bhattacharyya ...
• Kullback-Leibler divergence: The relative entropy or the Kullback-Leibler
divergence, defined for probability distributions 𝑝 and 𝑞, and 𝑋 the random
variable corresponding to 𝑝 as

𝐾𝐿(𝑝‖𝑞) = E𝑝 [ log(𝑝)
log(𝑞)]

• The Jeffrey divergence or the symmetric relative entropy, defined for p, q and
X in the same conditions as above, as

𝐾𝐿(𝑝‖𝑞) = 𝐾𝐿(𝑝‖𝑞) + 𝐾𝐿(𝑞‖𝑝)
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Information Theoretic Metric Learning (ITML)
• Let 𝑋 = {x1, ⋯ , x𝑛}, assume

𝒮 = {(𝑖, 𝑗) ∶ 𝑑M(x𝑖, x𝑗) < 𝑙} 𝒟 = {(𝑖, 𝑗) ∶ 𝑑M(x𝑖, x𝑗) > 𝑢}
• Given M ∈ 𝕊𝑑

+ we can construct a normal distribution:

𝑝(𝑥|M) = 1
(2𝜋)𝑛/2(det(M)1/2) exp((𝑥 − 𝜇)𝑇 M−1(𝑥 − 𝜇))

• We measure the closeness between M0 and M through the Kullback-Leibler
divergence between their corresponding gaussian distributions

𝐾𝐿(𝑝(𝑥|M0), 𝑝(𝑥|M)) = ∫ 𝑝(𝑥|M0) log 𝑝(𝑥|M0)
𝑝(𝑥|M) 𝑑𝑥

• DML Problem:

min
M∈𝕊𝑑

+
𝐾𝐿(𝑝(𝑥|M0), 𝑝(𝑥|M)) 𝑠.𝑡. 𝑑M(x𝑖, x𝑗) < 𝑙, (𝑖, 𝑗) ∈ 𝒮

𝑑M(x𝑖, x𝑗) > 𝑢, (𝑖, 𝑗) ∈ 𝒟
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Application of DML in Machine
Learning



Improve the performance of distance-based
classifiers
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Dimensionality reduction
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Other

• Axes selection and data rearrangement.
• Improving the performance of clustering algorithms
• Semi-supervised learning.
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Prospects and Challenges in
Distance Metric Learning



Prospects of DML

• Big data:
• although many of DML algorithms, especially those based on gradient descent,
are quite slow and do not scale well with the number of samples, they can be
largely parallelized in both matrix computations and gradient descent batches.

• DML can be extended to handle Big Data by developing specialized algorithms
and integrating them with frameworks such as Spark and Cloud Computing
architectures

• Application of DML to singular supervised learning problems:
– regression,
– multi-dimensional classification,
– ordinal classification,
– multi-output learning
– and even transfer learning.
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Prospects of DML: Hybridization

• Hybridization with feature selection techniques:
• to solve high dimensional data problems.
• to combine DML with feature selection techniques prepared for very high
dimensional data

• Hybridization with shallow learning techniques:
• DML with Naive-Bayes: obtaining a Naive-Bayes classifier whose feature
distributions are determined by the nearest neighbors of each class;

• DML with neural networks, to find the best neural network architecture;
• DML with random forests, by exploiting the relationship between voting points
and potential nearest neighbors;

• DML with ensemble methods, like bootstrap;
• DML with SVM, training them locally in neighborhoods
• DML with rule-learning algorithms, obtaining the so-called nested generalized
exemplar algorithms
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Prospects of DML: Hybridization
• Hybridization with deep learning techniques:

• use the k-nearest neighbors classifier to provide interpretability and robustness
to deep neural networks.

• deep metric learning: use of neural networks to learn distances
– Deep Metric Learning by Siamese Convolutional Neural Networks
– Triplet Convolutional Neural Networks
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Deep metric learning: siamese CNN

• Prepare the dataset in a pair-based format. Label these pair as similar or
dissimilar based on their ground truth.

• Choose a suitable loss function according to your dataset.
• Extract the features from the input pairs, calculate the similarity index, and
compute the gradients.

• While training, update the shared parameters using the computed gradients.
• Sister NN share the same weights and parameters.

MML’2023 Distance metric learning 37/48



Siamese CNN: Loss function

• Contrastive Loss Function: More formally, we suppose that we have a pair
(𝐼𝑖, 𝐼𝑗) and a label 𝑌 that is equal to 0 if the samples are similar and 1
otherwise. To extract a low-dimensional representation of each sample, we
use a CNN 𝑓 that encodes the input images 𝐼𝑖 and 𝐼𝑗 into an embedding
space where 𝑥𝑖 = 𝑓(𝐼𝑖) and 𝑥𝑗 = 𝑓(𝐼𝑗). The contrastive loss is defined as:

L = (1 − Y) ∗ ||𝑥𝑖 − 𝑥𝑗||2 + 𝑌 ∗ 𝑚𝑎𝑥(0, 𝑚 − ||𝑥𝑖 − 𝑥𝑗||2)

where 𝑚 is a hyperparameter, defining the lower bound distance between
dissimilar samples.

• Triplet Loss Function
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Siamese CNN example: SigNet
While training, the feature vectors need to have two properties to make the
few-shot learning strategy work:

1. the feature vectors of similar
and dissimilar pairs should be
descriptive, informative, and
distinct enough from each other
so that segregation can be
learned effectively.

2. the feature vectors of similar
image pairs should be similar
enough, and those for dissimilar
pairs should be dissimilar
enough so that the model can
quickly learn semantic similarity.
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Why use Siamese CNN

• Unlike traditional NN in deep learning, a siamese network does not require
too many instances of a class and few are enough to build a good model.

• Moreover, a new class can be added without training the entire network from
scratch after the siamese neural network has been trained and deployed.
The model trains by learning how similar or dissimilar image pairs are,
samples from a new class can be added to the trained siamese network, and
training can be resumed since the network architecture will compare the new
images with the rest of the classes and update the weights and the fully
connected layer.

• This behavior is unique to a network architecture that uses one-shot learning
since other categories of neural networks would have to be trained from
scratch on a large, class-balanced dataset for significant performance.
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Deep metric learning: triple CNN and triplet loss
Triplet loss outperforms the
contrastive loss by using triplets of
samples instead of pairs.
Specifically, it takes as input an
anchor sample 𝐼 , a positive sample
𝐼+ and a negative sample 𝐼−. During
training, the loss enforces the
distance between the anchor sample
and the positive sample to be less

than the distance between the anchor sample and the negative sample:

L = 𝑚𝑎𝑥(0, ||𝑥 − 𝑥+||2 − ||𝑥 − 𝑥−||2 + 𝑚)

When we train a model with the triplet loss, we require fewer samples for
convergence since we simultaneously update the network using both similar and
dissimilar samples.

MML’2023 Distance metric learning 41/48



Deep metric learning: more loss functions
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Prospects:

• Other approaches for the concept of distance:
• Most of the current DML theory focus on Mahalanobis distances
• other possible distances, such as local Mahalanobis distances, that lead to a
multi-metric learning

• Implementation: PyDML Library
• Demo:

MML’2023 Distance metric learning 43/48

https://pydml.readthedocs.io/en/latest/index.html


Challenges in DML
• Non-linear distance metric learning:

• learning a Mahalanobis distance is equivalent to learning a linear map!
• the kernelization of DML algorithms can be applied to fit non-linear data
• Challenge: Extend the kernel trick to other algorithms by searching for suitable
parameterizations and representer theorems.

• Challenge: Ądapt classical objective functions so that they can work with
non-linear distances or with non-linear transformations of the data learned by
another algorithm.

• Multi-linear distance metric learning:
• In many cases traditional vector representation may not be the most
appropriate to fit the data properly. – e.g. lack of the consideration of
neighborhood relationships between pixels in an image

• multi-linear DML should learn distances in, e.g. tensor spaces.
• Other optimization mechanisms.
– Non-convex optimization? Evolutionary algorithms: simulated annealing,
particle swarm optimization or response surface methods?
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Summary and Conclusions



Summary: We have studied
• The concept of DML: (1) what its applications are, (2) how to design its
algorithms, and the (3) theoretical foundations of this discipline.

• Some most popular DML algorithms and their theoretical foundations, and
explained different resolution techniques.

• In order to understand the theoretical foundations of DML and its algorithms,
it was necessary to delve into three different mathematical theories:

• Convex analysis: many optimization problems + methods for solving them.
• Matrix analysis: many useful tools to help understand DML, from how to
parameterize Mahalanobis distances to the optimization with eigenvectors
going through the most basic algorithm of semidefinite programming.

• Information theory has motivated several interesting algorithms.

• Deep metric learning seems to be an important study field for researchers.
– Most of the recent studies were inspired by Siamese and Triplet networks.
– Many loss functions have been designed
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Can you spot the owner
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