
Deep Learning Theory
An Introduction & Recent Results

Khoat Than
Hanoi University of Science and Technology

Summer school on Modern Machine Learning, SOICT, 9-2023

2Contents

¡ Recent breakthroughs

¡ The open theoretical challenge

¡ Basic concepts in learning theory

¡ Some theories for deep neural networks

3Some successes: AlphaGo (2016)

¡ AlphaGo of Google DeepMind:
the world champion at Go (cờ vây),
3/2016
¡ Go is a 2500-year-old game
¡ Go is one of the most complex games

¡ AlphaGo learns from 30 millions human
moves and plays itself to find new
moves

Wired

4Some successes: GPT-3 (2020)

Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan et al. "Language
models are few-shot learners." NeurIPS (2020). Best Paper Award

Mean accuracy
95% Confidence
Interval (low, hi)

t compared to
control (p-value)

“I don’t know”
assignments

Control (deliberately bad model) 86% 83%–90% - 3.6 %
GPT-3 Small 76% 72%–80% 3.9 (2e-4) 4.9%
GPT-3 Medium 61% 58%–65% 10.3 (7e-21) 6.0%
GPT-3 Large 68% 64%–72% 7.3 (3e-11) 8.7%
GPT-3 XL 62% 59%–65% 10.7 (1e-19) 7.5%
GPT-3 2.7B 62% 58%–65% 10.4 (5e-19) 7.1%
GPT-3 6.7B 60% 56%–63% 11.2 (3e-21) 6.2%
GPT-3 13B 55% 52%–58% 15.3 (1e-32) 7.1%
GPT-3 175B 52% 49%–54% 16.9 (1e-34) 7.8%

Table 7.3: Human accuracy in identifying whether short (⇠200 word) news articles are model
generated. We find that human accuracy (measured by the ratio of correct assignments to non-neutral
assignments) ranges from 86% on the control model to 52% on GPT-3 175B. This table compares
mean accuracy between five different models, and shows the results of a two-sample T-Test for the
difference in mean accuracy between each model and the control model (an unconditional GPT-3
Small model with increased output randomness).

Mean accuracy
95% Confidence
Interval (low, hi)

t compared to
control (p-value)

“I don’t know”
assignments

Control 88% 84%–91% - 2.7%
GPT-3 175B 52% 48%–57% 12.7 (3.2e-23) 10.6%

Table 7.4: People’s ability to identify whether ⇠ 500 word articles are model generated (as measured
by the ratio of correct assignments to non-neutral assignments) was 88% on the control model and
52% on GPT-3 175B. This table shows the results of a two-sample T-Test for the difference in mean
accuracy between GPT-3 175B and the control model (an unconditional GPT-3 Small model with
increased output randomness).

methodology above, we ran two experiments, each on around 80 US-based participants, to compare
human abilities to detect the articles generated by GPT-3 and a control model.

We found that mean human accuracy at detecting the intentionally bad longer articles from the control
model was ⇠ 88%, while mean human accuracy at detecting the longer articles that were produced
by GPT-3 175B was still barely above chance at ⇠ 52% (see Table 7.4). This indicates that, for news
articles that are around 500 words long, GPT-3 continues to produce articles that humans find difficult
to distinguish from human written news articles.

Acknowledgements

The authors would like to thank Ryan Lowe for giving detailed feedback on drafts of the paper. Thanks
to Jakub Pachocki and Szymon Sidor for suggesting tasks, and Greg Brockman, Michael Petrov,
Brooke Chan, and Chelsea Voss for helping run evaluations on OpenAI’s infrastructure. Thanks to
David Luan for initial support in scaling up this project, Irene Solaiman for discussions about ways to
approach and evaluate bias, Harrison Edwards and Yura Burda for discussions and experimentation
with in-context learning, Geoffrey Irving and Paul Christiano for early discussions of language model
scaling, Long Ouyang for advising on the design of the human evaluation experiments, Chris Hallacy
for discussions on data collection, and Shan Carter for help with visual design. Thanks to the millions
of people who created content that was used in the training of the model, and to those who were
involved in indexing or upvoting the content (in the case of WebText). Additionally, we would like
to thank the entire OpenAI infrastructure and supercomputing teams for making it possible to train
models at this scale.

16

Con người không
thể phân biệt bài
viết 500 từ là do
máy hay người

viết

GPT-3 for
contexts with
few data

¡ Language generation (writing ability?)
¨ A huge model was trained from a huge data set

¨ This model, as universal knowledge, can be used for many problems

5Some successes: AlphaFold 2 (2021)

¡ Accurate prediction of Protein folding

This computational
work represents a
stunning advance
on the protein-
folding problem,
a 50-year-old
grand challenge in
biology.

– Venki Ramakrishnan,
Nobel Laureate

Jumper, John, et al. "Highly accurate protein structure
prediction with AlphaFold." Nature 596.7873 (2021).

6Théâtre D’opéra Spatial
An AI-
Generated
Picture Won
an
Art Prize

@Jason Allen

+ Midjourney https://www.nytimes.com/2022/09/02/technology/ai-artificial-intelligence-artists.html

https://www.nytimes.com/2022/09/02/technology/ai-artificial-intelligence-artists.html

7Some successes: Text-to-image (2022)

¡ Draw pictures by short descriptions

Midjourney

A bowl
of
soup

DALL-E 2

Imagen

8Some successes: ChatGPT (2022)

¡ Human-level Chatting, Writing, QA,…

- Forbes, 2/2023

9Open question

¡ Why can deep neural networks perform well?
¡ Many breakthroughs in recognition, games, image

synthesis, language generation, Protein folding
prediction, …

10Theoretical study

¡ Approximation (power of an architecture)
¡ Pros: any continuous function can be approximated well by a deep neural network

(NNs)
¡ Cons: Unclear how to find a specific NN, based on a given training set

¡ Optimization (learning process)
¡ Overparameterized NNs can have zero training error, but do not overfit
¡ SGD can find global solutions to the training problems
¡ Cons: good optimization does not imply good generalization ability

¡ Generalization (ability of trained NNs to perform on unseen data)
¡ Existing standard theories cannot be used, due to vacuousness
¡ Some theories work well for only NNs with one-hidden layer

Learning theory
Basic concepts

11

12The learning problem

¡ There is an unknown (measurable) function
𝑦∗: 𝒳 → 𝒴

¡ It maps each input 𝒙 ∈ 𝒳 to a label (output) 𝑦 ∈ 𝒴
¡ Spaces: input space 𝒳, output space 𝒴

¡ We can collect a dataset D = {(x1, y1), (x2, y2), …, (xM, yM)}
¡ 𝑦! = 𝑦∗(𝒙!) for any 𝑖 ∈ {1, … ,𝑀}
¡ Sometimes labels cannot be collected

¡ We need to find 𝑦∗ from D

¡ In practice, we often find a function h to approximate 𝑦∗

7.1. Maximum Margin Classifiers 331

Figure 7.2 Example of synthetic data from
two classes in two dimensions
showing contours of constant
y(x) obtained from a support
vector machine having a Gaus-
sian kernel function. Also shown
are the decision boundary, the
margin boundaries, and the sup-
port vectors.

form (6.23). Although the data set is not linearly separable in the two-dimensional
data space x, it is linearly separable in the nonlinear feature space defined implicitly
by the nonlinear kernel function. Thus the training data points are perfectly separated
in the original data space.

This example also provides a geometrical insight into the origin of sparsity in
the SVM. The maximum margin hyperplane is defined by the location of the support
vectors. Other data points can be moved around freely (so long as they remain out-
side the margin region) without changing the decision boundary, and so the solution
will be independent of such data points.

7.1.1 Overlapping class distributions
So far, we have assumed that the training data points are linearly separable in the

feature space φ(x). The resulting support vector machine will give exact separation
of the training data in the original input space x, although the corresponding decision
boundary will be nonlinear. In practice, however, the class-conditional distributions
may overlap, in which case exact separation of the training data can lead to poor
generalization.

We therefore need a way to modify the support vector machine so as to allow
some of the training points to be misclassified. From (7.19) we see that in the case
of separable classes, we implicitly used an error function that gave infinite error
if a data point was misclassified and zero error if it was classified correctly, and
then optimized the model parameters to maximize the margin. We now modify this
approach so that data points are allowed to be on the ‘wrong side’ of the margin
boundary, but with a penalty that increases with the distance from that boundary. For
the subsequent optimization problem, it is convenient to make this penalty a linear
function of this distance. To do this, we introduce slack variables, ξn ! 0 where
n = 1, . . . , N , with one slack variable for each training data point (Bennett, 1992;
Cortes and Vapnik, 1995). These are defined by ξn = 0 for data points that are on or
inside the correct margin boundary and ξn = |tn − y(xn)| for other points. Thus a
data point that is on the decision boundary y(xn) = 0 will have ξn = 1, and points

4 1. INTRODUCTION

Figure 1.2 Plot of a training data set of N =
10 points, shown as blue circles,
each comprising an observation
of the input variable x along with
the corresponding target variable
t. The green curve shows the
function sin(2πx) used to gener-
ate the data. Our goal is to pre-
dict the value of t for some new
value of x, without knowledge of
the green curve.

x

t

0 1

−1

0

1

detailed treatment lies beyond the scope of this book.
Although each of these tasks needs its own tools and techniques, many of the

key ideas that underpin them are common to all such problems. One of the main
goals of this chapter is to introduce, in a relatively informal way, several of the most
important of these concepts and to illustrate them using simple examples. Later in
the book we shall see these same ideas re-emerge in the context of more sophisti-
cated models that are applicable to real-world pattern recognition applications. This
chapter also provides a self-contained introduction to three important tools that will
be used throughout the book, namely probability theory, decision theory, and infor-
mation theory. Although these might sound like daunting topics, they are in fact
straightforward, and a clear understanding of them is essential if machine learning
techniques are to be used to best effect in practical applications.

1.1. Example: Polynomial Curve Fitting

We begin by introducing a simple regression problem, which we shall use as a run-
ning example throughout this chapter to motivate a number of key concepts. Sup-
pose we observe a real-valued input variable x and we wish to use this observation to
predict the value of a real-valued target variable t. For the present purposes, it is in-
structive to consider an artificial example using synthetically generated data because
we then know the precise process that generated the data for comparison against any
learned model. The data for this example is generated from the function sin(2πx)
with random noise included in the target values, as described in detail in Appendix A.

Now suppose that we are given a training set comprising N observations of x,
written x ≡ (x1, . . . , xN)T, together with corresponding observations of the values
of t, denoted t ≡ (t1, . . . , tN)T. Figure 1.2 shows a plot of a training set comprising
N = 10 data points. The input data set x in Figure 1.2 was generated by choos-
ing values of xn, for n = 1, . . . , N , spaced uniformly in range [0, 1], and the target
data set t was obtained by first computing the corresponding values of the function

[Figure by C. Bishop]

13Basic concepts

¡ Loss/cost function:
𝑓:𝒴×𝒴 → ℝ

¡ 𝑓(𝑦, 1𝑦): the cost/loss of prediction 1𝑦 about 𝑦
¡ 0-1 loss: 𝑓(𝑦, 1𝑦) = 𝟏#$%#
¡ Square loss: 𝑓(𝑦, 1𝑦) = 𝑦 − 1𝑦 &

¡ Empirical loss: the loss of a function h on the training set D

𝐹 𝑫, ℎ =
1
𝑀
0

"#$

%
𝑓(𝑦", ℎ 𝒙")

¡ Expected loss (risk): the loss of a function h over the
whole space

𝐹 𝑃, ℎ = 𝔼(𝒙,))~,[𝑓(𝑦, ℎ 𝒙)]
¡ P is the distribution where each (𝒙, 𝑦) is sampled

ℋ

𝑦∗

14Learning goal

¡ Function space (hypothesis space, model space):
a set ℋ of functions, where a learner will select a good function ℎ ∈ ℋ
¡ Depends on input features: ℎ: 𝒳 → 𝒴
¡ Represents our prior knowledge about a task
¡ E.g. for a linear model:

ℋ = {𝑤0 + 𝑤1𝑥1 + … + 𝑤𝑛𝑥𝑛| 𝒘 = (𝑤0, 𝑤1, … , 𝑤') ∈ ℝ'()}

¡ Learner: a learning algorithm that can select one ℎ ∈ ℋ
¡ Input: a training set D and ℋ

¡ Learning goal: find one ℎ ∈ ℋ with small expected loss
¡ ℎ should generalize well on future data

¡ Ultimately, we want to find the best one in ℋ: ℎ∗ = argmin
-∈ℋ

𝐹(𝑃, ℎ)

15Learning vs Fitting

¡ Fitting:
ℎ0∗ = argmin

-∈ℋ
𝐹(𝑫, ℎ)

¡ Minimize the training loss 𝐹 𝑫, ℎ
¡ Focus on “Interpolation”

¡ Learning ≠ Fitting
¡ Learning requires the learned model

to generalize well on future data
¡ Ability of “extrapolation”

y

x

ℋ

𝑦∗

ℎ"∗
ℎ∗

16Errors of a trained model

¡ After training, the learning algorithm will return ℎ0 ∈ ℋ
¡ How well does it work with future data?
¡ Maybe: ℎ0 ≠ ℎ0∗ and ℎ0 ≠ ℎ∗

¡ ℎ*∗ = argmin
+∈ℋ

𝐹(𝑫, ℎ) is the minimizer of the empirical loss

¡ ℎ∗ = argmin
+∈ℋ

𝐹(𝑃, ℎ) is the best member of family ℋ

¡ Note:
𝐹 𝑃, ℎ0 − 𝐹 𝑃, 𝑦∗ = 𝐹 𝑃, ℎ0 − 𝐹 𝑃, ℎ∗ + 𝐹 𝑃, ℎ∗ − 𝐹 𝑃, 𝑦∗

¡ Estimation error: 𝐹 𝑃, ℎ0 − 𝐹 𝑃, ℎ∗

¡ How good is the learning algorithm?

¡ Approximation error: 𝐹 𝑃, ℎ∗ − 𝐹 𝑃, 𝑦∗
¡ Capacity (representational power) of family ℋ

ℋ

𝑦∗

ℎ"∗ℎ"
ℎ∗

Bousquet et al. Introduction to statistical learning theory.
In Machine Learning, LNAI, volume 3176. Springer, 2004.

17Error decomposition

¡ Estimation error
|𝐹 𝑃, ℎ0 − 𝐹 𝑃, ℎ∗ | ≤ |𝐹 𝑫, ℎ0 − 𝐹 𝑫, ℎ0∗ | + 2 sup

-∈ℋ
|𝐹 𝑃, ℎ − 𝐹 𝑫, ℎ |

¡ It can be decomposed into two types of error

¡ Optimization error: 𝐹 𝑫, ℎ0 − 𝐹 𝑫, ℎ0∗

¡ How close to optimality is ℎ*?
¡ ℎ* may not be the global solution to the training problem

¡ Generalization error: 𝐹 𝑃, ℎ0 − 𝐹 𝑫, ℎ0
¡ How far is the training loss from expected loss?

¡ In summary:

ℋ

𝑦∗

ℎ"∗ℎ"
ℎ∗

𝐸𝑟𝑟𝑜𝑟 ℎ0 ≔ Optimization error +Generalization error +Approximation error

18Errors by different factors

¡ Function space ℋ
¡ A bigger space (𝒦), the (probably) smaller approximation error
¡ More complex members, the (probably) smaller approximation error
è larger capacity

¡ An effective space (ℋ.) is enough è not too big/complex

¡ Training algorithm 𝒜
¡ A better 𝒜 implies smaller estimation error of the trained model
¡ A bad 𝒜 can provide small optimization error,

but large generalization error è overfitting
¡ A good 𝒜 can localize an effective subset ℋ∗ ⊂ ℋ

¡ Data
¡ Complexity of the data space
¡ Representativeness of the training samples, …

ℋ

𝑦∗

ℋ

𝑦∗
𝒦

ℋ1

data
manifolds

19A unified view

Error

Data space
𝓧 (×𝓨)

Learning algorithm
𝓐

Function space
𝓗

Optimization
error

Generalization
error

Approximation
error

20Bounding the error

¡ Study upper (and lower) bounds for the errors

¡ Approximation error:
|𝐹 𝑃, 𝑦∗ − 𝐹 𝑃, ℎ∗ | ≤ 𝜖7

¡ Capacity of family ℋ

¡ The ability of ℋ to approximate function 𝑦∗

¡ Optimization error:
|𝐹 𝑫, ℎ0∗ − 𝐹 𝑫, ℎ0 | ≤ 𝜖0

¡ Depending on the number of training iterations (epochs)
¡ Capacity of learning algorithm 𝒜

ℋ

𝑦∗

ℎ"∗ℎ"
ℎ∗

Error

Data space
!	(×%)

Learning algorithm
'

Function space
(

Optimization
error

Generalization
error

Approximation
error

Bousquet et al. Introduction to statistical learning theory. In Machine Learning, LNAI, volume 3176. Springer, 2004.

21Bounds on Generalization Error

𝐹 𝑃, ℎ0 − 𝐹 𝑫, ℎ0 ≤ 𝜖8
¡ Generalizability of a learned function ℎ*

¡ Uniform bounds:
sup
-∈ℋ

|𝐹 𝑃, ℎ − 𝐹 𝑫, ℎ | ≤ 𝜖8

¡ Generalizability of the worst member
¡ May not be a good way to explain a learned function ℎ*

¡ PAC-Bayes bounds:
𝔼-∈ℋ 𝐹 𝑃, ℎ − 𝐹 𝑫, ℎ ≤ 𝜖8

¡ Study the error on average over ℋ

¡ See the goodness on average over the model family
¡ May not explain a learned function ℎ*

Nagarajan & Kolter. Uniform convergence may be unable to explain generalization in deep learning. Advances in Neural Information Processing Systems. 2019.

ℋ

𝑦∗

ℎ"∗ℎ"
ℎ∗

Error

Data space
!	(×%)

Learning algorithm
'

Function space
(

Optimization
error

Generalization
error

Approximation
error

Theoretical results for
deep neural networks

A short summary

22

23Neural network

¡ Artificial neural networks (ANN):
¡ Biologically inspired by human brain
¡ A rich family to represent complex functions

¡ An ANN:
¡ Consists of many neurons, organized in a layer-wise manner
¡ Each neuron computes a simple function
¡ A neuron can have few connections to other neurons

¡ Each configuration about #neurons, #layers,
#connections, … è an architecture

¡ Shallow vs. Deep NNs:
¡ One hidden layer >< many hidden layers

24Mathematical description

ℎ 𝒙,𝑾 = 𝑔9 𝑾9ℎ9:$, where ℎ" = 𝑔" 𝑾"ℎ":$, ℎ; = 𝒙
¡ An NN with K layers

¡ 𝑾! is the weight matrix at layer i

¡ ℎ! is the output of layer i

¡ 𝑔! is the activation function at layer i

¡ A NN maps an input 𝒙 to an output y = ℎ 𝒙,𝑾
¡ Function space:

ℋ = ℎ 𝒙,𝑾 𝑾$, …𝑾9 are real matrices}

¡ Training: often find weights W, by minimizing a loss 𝐹 𝑫, ℎ

ℋ

𝑦∗

ℎ"∗ℎ"
ℎ∗

𝐸𝑟𝑟𝑜𝑟 ℎ0 ≈ Optimization error +Generalization error +Approximation error

(feedforward network)

25Approximation error: classical

𝑦∗ − ℎ ≤ 𝜖7

¡ Increase capacity è approximate better
¡ Larger family ℋ′
¡ More complex NNs è stronger representational power
¡ E.g., wider or deeper NNs

¡ Any binary function can be learnt (approximately well) by a feedforward
network using one hidden layer, when the width goes to infinity

¡ Any bounded continuous function can be learnt (approximately) by a
feedforward network using one hidden layer [Cybenko, 1989; Hornik, 1991]

Cybenko, G. (1989). Approximations by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems.
Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2), 251-257.

ℋ

𝑦∗

ℋ

𝑦∗
ℋ′

26Approximation error: modern

27Approximation error: modern

¡ Any continuous function can be approximated arbitrarily well by
Convolutional neural network, when the depth is large [Zhou, 2020]

¡ Any Lebesgue-integrable function can be approximated arbitrarily well by
a ResNet with one neuron per hidden layer [Lin & Jegelka, 2018]

¡ Deep NNs avoid the curse of dimensionality when approximating Lipschitz
functions [Poggio et al. 2017; Lu et al. 2021]
¡ Shallow NNs cannot

¡ To approximate a Lipschitz function (mapping 0,1 ! to ℝ) with error 𝑂(𝑁" #),
width max{𝑛, 5𝑁 + 13} and depth 64𝑛𝐿 + 3 are sufficient

Lin, H., & Jegelka, S. (2018). ResNet with one-neuron hidden layers is a universal approximator. NeurIPS.
Lu, J., Shen, Z., Yang, H., & Zhang, S. (2021). Deep network approximation for smooth functions. SIAM Journal on

Mathematical Analysis.
Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B., & Liao, Q. (2017). Why and when can deep-but not shallow-

networks avoid the curse of dimensionality: a review. International Journal of Automation and Computing.
Zhou, D. X. (2020). Universality of deep convolutional neural networks. Applied and Computational Harmonic Analysis.

Universal approximators

28Approximation: existence ↛ method

Unclear
how to find such DNNs,

based on a training set

29Optimization error

¡ Training is often by minimizing a loss 𝐹 𝑫, ℎ

¡ The training loss is highly non-convex

¡ Theory:
¡ Exponentially large number of iterations may be needed
¡ Intractable in the worst case [Nesterov, 2018]

¡ Practice:
¡ Often have zero training error è global solution ℎ$∗?
¡ Easily perfectly fit random labelling of data [Zhang et al. 2021]

(training seems to be easy!)

¡ Contradiction? What’s missing?

Nesterov, Y. (2018). Lectures on convex optimization. Springer.
Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2021). Understanding deep learning (still) requires rethinking generalization. Communications of the ACM.

𝐹 𝑫, ℎ$ − 𝐹 𝑫, ℎ$∗

ℋ

𝑦∗

ℎ"∗ℎ"
ℎ∗

30Optimization: theoretically easy

¡ Gradient descent (GD) achieves zero training loss in polynomial time for a
deep over-parameterized ResNet [Du et al. 2019]
¡ Over-parameterization: #parameters ≫ training size

¡ GD can find a global optimum when the width of the last hidden layer of
an MLP exceeds the number of training samples [Nguyen, 2021]

¡ Stochastic gradient descent (SGD) can find global minima on the training
objective of DNNs in polynomial time [Allen-Zhu et al. 2019]
¡ Architecture: MLP, CNN, ResNet

Du, S., Lee, J., Li, H., Wang, L., & Zhai, X. (2019). Gradient descent finds global minima of deep neural networks. In International Conference on Machine Learning.
Nguyen, Q. (2021). On the proof of global convergence of gradient descent for deep relu networks with linear widths. In International Conference on Machine Learning.
Allen-Zhu, Z., Li, Y., & Song, Z. (2019). A convergence theory for deep learning via over-parameterization. In International Conference on Machine Learning.

31Optimization: reminder

However
global optimality

of the training problem
does not imply

good predictive ability

32Bias-Variance tradeoff: classical view

¡ The more complex the model is, the more data points it can capture, and
the lower the bias can be
¡ However, higher complexity will make the model "move" more to capture the data

points, and hence its variance will be larger.

7.3 The Bias–Variance Decomposition 227

0.
0

0.
1

0.
2

0.
3

0.
4

Number of Neighbors k

50 40 30 20 10 0

k−NN − Regression

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

Subset Size p

Linear Model − Regression

0.
0

0.
1

0.
2

0.
3

0.
4

Number of Neighbors k

50 40 30 20 10 0

k−NN − Classification

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

Subset Size p

Linear Model − Classification

FIGURE 7.3. Expected prediction error (orange), squared bias (green) and vari-
ance (blue) for a simulated example. The top row is regression with squared error
loss; the bottom row is classification with 0–1 loss. The models are k-nearest
neighbors (left) and best subset regression of size p (right). The variance and bias
curves are the same in regression and classification, but the prediction error curve
is different.

Expected
prediction
error

Variance

Bias

38 2. Overview of Supervised Learning

High Bias

Low Variance

Low Bias

High Variance

P
re
d
ic
ti
on

E
rr
or

Model Complexity

Training Sample

Test Sample

Low High

FIGURE 2.11. Test and training error as a function of model complexity.

be close to f(x0). As k grows, the neighbors are further away, and then
anything can happen.

The variance term is simply the variance of an average here, and de-
creases as the inverse of k. So as k varies, there is a bias–variance tradeoff.

More generally, as the model complexity of our procedure is increased, the
variance tends to increase and the squared bias tends to decrease. The op-
posite behavior occurs as the model complexity is decreased. For k-nearest
neighbors, the model complexity is controlled by k.

Typically we would like to choose our model complexity to trade bias
off with variance in such a way as to minimize the test error. An obvious
estimate of test error is the training error 1

N

∑
i(yi − ŷi)2. Unfortunately

training error is not a good estimate of test error, as it does not properly
account for model complexity.

Figure 2.11 shows the typical behavior of the test and training error, as
model complexity is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In
that case the predictions f̂(x0) will have large variance, as reflected in the
last term of expression (2.46). In contrast, if the model is not complex
enough, it will underfit and may have large bias, again resulting in poor
generalization. In Chapter 7 we discuss methods for estimating the test
error of a prediction method, and hence estimating the optimal amount of
model complexity for a given prediction method and training set.

Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical Learning. Springer, 2009.

33Bias-Variance: modern behavior

¡ Modern phenomenon:
Very rich models such as DNNs are trained to
exactly fit the data, but often obtain high accuracy
on test data [Belkin et al., 2019]

¡ 𝐵𝑖𝑎𝑠 ≅ 0
¡ GPT-4, ResNets, StyleGAN, DALLE-3, …

38 2. Overview of Supervised Learning

High Bias

Low Variance

Low Bias

High Variance

P
re
d
ic
ti
on

E
rr
or

Model Complexity

Training Sample

Test Sample

Low High

FIGURE 2.11. Test and training error as a function of model complexity.

be close to f(x0). As k grows, the neighbors are further away, and then
anything can happen.

The variance term is simply the variance of an average here, and de-
creases as the inverse of k. So as k varies, there is a bias–variance tradeoff.

More generally, as the model complexity of our procedure is increased, the
variance tends to increase and the squared bias tends to decrease. The op-
posite behavior occurs as the model complexity is decreased. For k-nearest
neighbors, the model complexity is controlled by k.

Typically we would like to choose our model complexity to trade bias
off with variance in such a way as to minimize the test error. An obvious
estimate of test error is the training error 1

N

∑
i(yi − ŷi)2. Unfortunately

training error is not a good estimate of test error, as it does not properly
account for model complexity.

Figure 2.11 shows the typical behavior of the test and training error, as
model complexity is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In
that case the predictions f̂(x0) will have large variance, as reflected in the
last term of expression (2.46). In contrast, if the model is not complex
enough, it will underfit and may have large bias, again resulting in poor
generalization. In Chapter 7 we discuss methods for estimating the test
error of a prediction method, and hence estimating the optimal amount of
model complexity for a given prediction method and training set.

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd

!C of the form

h(x)=
NX

k=1

ak�(x ; vk) where �(x ; v):=e
p
�1hvk ,xi,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N !1, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H1. While it is possible to directly use
H1 [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd

⇥R, we find the predictor hn,N 2

HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

Pn
i=1(h(xi)� yi)

2 over all functions h 2HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN)
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm khk

H1
, which is generally

difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.

D
ow

nl
oa

de
d

at
 V

ie
t N

am
: P

N
AS

 S
po

ns
or

ed
 o

n
Ju

ne
 2

8,
 2

02
1

Model complexity

Ri
sk

 (E
rro

r)

Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machine-learning practice and the
classical bias–variance trade-off. Proceedings of the National Academy of Sciences, 116(32), 15849-15854.

¡ Classical view:
more complex model
¡ Lower bias, higher variance

34Generalization ability: long-standing open

¡ Main goal: small expected loss 𝐹 𝑃, ℎ0
¡ Practice: training loss 𝐹 𝑫, ℎ$ ≅ 0 for overparameterized NNs

¡ Why can a trained DNN generalize well?
(Generalization: ability to well perform on unseen data)

¡ We want to assure, for 𝛿 > 0,

Pr 𝐹 𝑃, ℎ0 − 𝐹 𝑫, ℎ0 ≤ 𝜖 ≥ 1 − 𝛿

¡ Generalization gap should be small with a high probability
over the random choice of D

¡ How fast does 𝐹 𝑫, ℎ$ converge to 𝐹 𝑃, ℎ$?
(as the training size 𝑚 increases)

𝐸𝑟𝑟𝑜𝑟 ℎ$ ≔
Approximation error
+Optimization error
+Generalization error

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of Machine Learning. MIT press.
Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2021). Understanding deep learning (still) requires rethinking generalization. Communications of the ACM.

A long-
standing

challenge
in DL theory

35Generalization: VC dimension

¡ Vapnik–Chervonenkis (VC) dimension:
¡ Measure of the capacity (complexity, expressive power, richness) of a set of functions
¡ The cardinality of the largest set of points that the learning algorithm can shatter
¡ A higher VC dim è richer model family ℋ

¡ Example: in 𝑛-dimensional space
¡ Linear models: 𝑉𝐶 ℋ = 	𝑛 + 1
¡ ReLU networks with 𝑊 weights: 𝑉𝐶 ℋ = Ω(𝑊 log𝑊)

¡ Classical bound: for any 𝛿 > 0, with probability at least 1 − 𝛿

𝐹 𝑃, ℎ − 𝐹 𝑫, ℎ ≤
2
𝑚
𝑉𝐶 ℋ log

2𝑒.𝑚
𝑉𝐶 ℋ

+
1
𝑚
log

2
𝛿

¡ Vacuous/meaningless for modern DNNs, due to 𝑊 ≫ 𝑚 (training size)

Bartlett, P. L., Harvey, N., Liaw, C., &
Mehrabian, A. (2019). Nearly-tight VC-
dimension and pseudodimension bounds
for piecewise linear neural networks. The
Journal of Machine Learning Research.

36Generalization: Weight norm

¡ DNN: ℎ 𝒙,𝑾 = 𝑔9 𝑾9ℎ9:$

¡ Bartlett: #params is not important
¡ Size of weights may be more important

¡ Neyshabur et al.; Golowich et al.:
𝐹 𝑃, ℎ − 𝐹 𝑫, ℎ ≤ 𝑂(𝑾$ B⋯ 𝑾9 B)/ 𝑚

¡ Bartlett et al.:
𝐹 𝑃, ℎ − 𝐹 𝑫, ℎ ≤ 𝑂(𝑾$ C⋯ 𝑾9 C)/ 𝑚

Arora, S., Ge, R., Neyshabur, B., & Zhang, Y. (2018). Stronger generalization bounds for deep nets via a compression approach. In ICML.
Bartlett, P. (1998). The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the

network. IEEE Transactions on Information Theory.
Bartlett, P. L., Foster, D. J., & Telgarsky, M. J. (2017). Spectrally-normalized margin bounds for neural networks. Neural Information Processing Systems.
Golowich, N., Rakhlin, A., & Shamir, O. (2020). Size-independent sample complexity of neural networks. Information and Inference: A Journal of the IMA.
Neyshabur, B., Bhojanapalli, S., & Srebro, N. (2018). A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks. In ICLR.

Stronger Generalization Bounds for Deep Nets via a Compression Approach

0.0 0.1 0.2 0.3
a) layer cushion µi

random init
trained

0.2 0.4 0.6
b) minimal inter-layer cushion µi!

random init
trained

1.0 1.2 1.4
c) contraction c

random init
trained

0.00 0.02 0.04 0.06
d) interlayer smoothness 1/�

random init
trained

Figure 2. Distribution of a) layer cushion, b) (unclipped) mini-
mal interlayer cushion, c) activation contraction and d) interlayer
smoothness of the 13-th layer of VGG-19 nets on on training set.
The distributions on a randomly-initialized and a trained net are
shown in blue and orange. Note that after clipping, the minimal
interlayer cushion is set to 1/

p
hi for all layers except the first one,

see appendix D.1.

almost zero but the test error continues to improve in later
epochs. Our generalization bound continues to improve,
though not to the same level. Thus our generalization bound
captures part of generalization phenomenon, not all. Still,
this suggests that SGD somehow improves our generaliza-
tion measure implicitly. Making this rigorous is a good topic
for further research.

Furthermore, we investigate effect of training with normal
data and corrupted data by training two AlexNets respec-
tively on original and corrupted CIFAR-10 with randomly
shuffled labels. We identify two key properties that differ
significantly between the two networks: layer cushion and
activation contraction, see D.2. Since our bound predicts
larger cushion and lower contraction indicates better gen-
eralization, our bound is consistent w with the fact that the
net trained on normal data generalizes (77.22% validation
accuracy).

6.3. Comparison to other generalization bounds

Figure 3 compares our proposed bound to other neural-net
generalization bounds on the VGG-19 net and compares
to naive VC dimension bound (which of course is too pes-
simistic). All previous generalization bounds are orders
of magnitude worse than ours; the closest one is spectral
norms times average `1,2 of the layers (Bartlett et al., 2017)
which is still about 1018, far greater than VC dimension.
(As mentioned we’re ignoring nuisance factors like depth

VC
-d
im

120 200 280
0.075

0.08

0.085

0.09

0.095

Figure 3. Left) Comparing neural net generalization bounds. See
Appendix D.3 for details. Right) Comparing our bound to empiri-
cal generalization error during training. Our bound is rescaled to
be within the same range as the generalization error.

and log h which make the comparison to VC dimension a
bit unfair, but the comparison to previous bounds is fair.)
This should not be surprising as all other bounds are based
on product of norms is pessimistic (see note at the start of
Section 3) which we avoid due to the noise stability analysis
resulting in a bound that has more dependence on the data.

Table 1 shows the compressibility of various layers accord-
ing to the bounds given by our theorem. Again, this is a
qualitative due to ignoring nuisance factors, but it gives an
idea of which layers are important in the calculation.

layer c2i�
2
i di/sie2
µ2
iµ

2
i!

actual # param compression (%)
1 1644.87 1728 95.18
4 644654.14 147456 437.18
6 3457882.42 589824 586.25
9 36920.60 1179648 3.129

12 22735.09 2359296 0.963
15 26583.81 2359296 1.126
18 5052.15 262144 1.927

Table 1. Effective number of parameters identified by our bound.
Compression rates can be as low as 1% in later layers (from 9 to
19) whereas earlier layers are not so compressible. Dependence on
depth d, log factors, constants are ignored as mentioned in the text.

7. Conclusions

With a new compression-based approach, the paper has
made progress on several open issues regarding general-
ization properties of deep nets. The approach also adapts
specially to convolutional nets. The empirical verification of
the theory in Section 6 shows a rich set of new properties sat-
isfied by deep nets trained on realistic data, which we hope
will fuel further theory work on deep learning, including
how these properties play into optimization and expressiv-
ity. Another possibility is a more rigorous understanding of
deep net compression, which sees copious empirical work
motivated by low-power applications. Perhaps our p-wise in-
dependence idea used for compressing convnets (Section 5)
has practical implications.

Uninformative
for modern

DNNs

37Generalization: PAC-Bayes

¡ Consider 𝔼-~D 𝐹 𝑃, ℎ − 𝐹 𝑫, ℎ
¡ Generalization error on average over ℋ
¡ 𝜌 is the posterior distribution of h

¡ McAllester: with probability at least 1 − 𝛿

𝔼-~D 𝐹 𝑃, ℎ − 𝐹 𝑫, ℎ ≤
𝐾𝐿(𝜌| 𝜇 + log(𝑚/𝛿)

2𝑚 − 1
¡ 𝜇 is the prior distribution of h
¡ KL is the Kullback-Leibler divergence

McAllester, D. A. (2003). PAC-Bayesian stochastic model selection. Machine Learning, 51(1), 5-21.

¡ The “distance” between
posterior 𝜌 and prior 𝜇:
¡ Plays important role
¡ Depends on the bias of a

learning algorithm

¡ Unclear how fast can 𝜌
approach 𝜇?

¡ Do not directly consider
the complexity of family
ℋ

Meaningful bounds appeared

38Generalization: non-vacuous bounds

¡ We can optimize the PAC-Bayes bound
¡ Find the posterior 𝜌∗ that minimizes 𝐾𝐿(𝜌| 𝜇

¡ Dziugaite & Roy: non-vacuous bounds
¡ MLP with 3 layers, SGD algorithm, MNIST dataset

¡ Zhou et al.: compressibility è small KL
¡ Use SOTA compression alg. to find nonvacuous

bound for ImageNet, LeNet-5, MobileNet

¡ Lotfi et al., 2022:
¡ Propose compression alg. to find nonvacuous

bounds for LeNet-5, ResNet-18, MobileViT

Dziugaite, G., & Roy, D. (2017). Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data. In UAI.
Zhou, W., Veitch, V., Austern, M., Adams, R., & Orbanz, P. (2019). Non-vacuous Generalization Bounds at the ImageNet Scale: a PAC-Bayesian Compression Approach. In ICLR.
Lotfi, S., Finzi, M., Kapoor, S., Potapczynski, A., Goldblum, M., & Wilson, A. G. (2022). PAC-bayes compression bounds so tight that they can explain generalization. In NeurIPS.
Biggs, F., & Guedj, B. (2022). Non-vacuous generalisation bounds for shallow neural networks. In ICML.

Biggs & Guedj, 2022:
¡ Non-vacuous bounds for a

(special) deterministic networks
¡ MNIST and Fashion-MNIST

datasets

Table 2: Our PAC-Bayesian subspace compression bounds compared to state-of-the-art (SOTA)
bounds. All results are with 95% confidence, i.e. � = .05. The sign † refers to data-independent
SOTA numbers that we computed using [59], which we run on the additional datasets.

Dataset Data-independent priors Data-dependent priors
Err. Bound (%) SOTA (%) Err. Bound (%) SOTA (%)

MNIST 11.6 21.7 [59] 1.4 1.5 [59]
+ SVHN Transfer 9.0 16.1†

FashionMNIST 32.8 46.5† 10.1 38 [19]
+ CIFAR-10 Transfer 28.2 30.1†

CIFAR-10 58.2 89.9† 16.6 16.7 [59]
+ ImageNet Transfer 35.1 54.2†

CIFAR-100 94.6 100† 44.4 –
+ ImageNet Transfer 81.3 98.1†

ImageNet 93.5 96.5 [73] 40.9 –

the remaining part of the process: the adaptation of the prior P (h | Da) to the posterior Q(h) using
the data Db. The empirical risk is computed over Db only. Intuitively, using dataset Da it is possible
to construct a much tighter prior over the possible neural network solutions. In our setting, simi-
lar to transfer learning, we use the prior PDa(✓) = 2�K(✓|✓Da)/Z where for compression we use
✓ = ✓Da + Pw, and ✓Da is the solution found by training the model (without random projections)
on the data Da rather than initializing randomly. With these data-dependent priors, we achieve the
best bounds in Table 2.

However, our adaptive approach exposes a significant downside of data-dependent priors. To the
extent that PAC-Bayes bounds can be used for explanation, data-dependent bounds only provide
insights into the procedure used to adapt the prior PDa(✓) to the posterior Q using Db: any learning
that is done in finding PDa(✓) is not constrained or explained by the bound. Given the ability to
adapt the size of the KL to the difficulty of the problem, it is possible to squeeze all of the learning
into PDa(✓) and none in this adaption to Q. This phenomenon happens as the KL ! 0, which we
find happens empirically (or very nearly so) across splits of the data, and especially when n � m
is large. Setting Q(✓) = 1[✓=✓Da]

, the KL has only the contribution from the optimization over
d: KL(Q||PDa) logD. We find that the bound is nothing more than a variant of the simple

Hoeffding bound where Db is the validation set R (✓Da) R̂Db (✓Da) +
q

log(Dm/�)+2
2m�1 .

We can see this phenomenon in Figure 1(a) where we compare existing data-dependent bounds to
the simple Hoeffding bound applied directly to the data-dependent prior which was trained on only
a small fraction of the data. We can consider the Hoeffding bound as the simplest data-dependent
bound without any fine-tuning so that the prior, a single pre-trained checkpoint, is directly eval-
uated on held-out validation data with no KL-divergence term. If another data-dependent bound
cannot achieve significantly stronger guarantees than the prior Hoeffding bound, then it only ex-
plains that neural networks generalize because the priors already have low validation error which is
no explanation for generalization at all. Indeed, we see in Figure 1 that the strength of existing data-
dependent bounds relies almost entirely on the a priori properties of the data-dependent prior rather
than constraining the actual learning process through compressibility. Similarly, from a minimum
description length (MDL) perspective, data-independent bounds can be used to provide a lossless
compression of the training data, whereas data-dependent bounds cannot (see Appendix H).

We also note that with data-dependent priors, optimization over the subspace dimension selects very
low dimensionality, even if the data does not have low intrinsic dimension. Because most of the data
fitting is moved into fitting the prior, the bound selects a low complexity solution with respect to the
prior without hurting data fit by choosing a low subspace dimensionality (Appendix D).

By contrast, data-independent bounds explain generalization for the entirety of the learning process.
Similarly, our transfer learning bounds meaningfully constrain what happens in the fine-tuning on
the downstream task, but they do not constrain the prior determined from the upstream task.

8

Stochastic
DNNs

39Generalization: long-standing open

¡ Some other approaches:
¡ Neural tangent kernel, Mean field
¡ Algorithmic robustness, algorithmic stability, … Error

Data space
!	(×%)

Learning algorithm
'

Function space
(

Optimization
error

Generalization
error

Approximation
error

Current meaningful bounds
however are mostly for

stochastic or shallow NNs

Unclear about
Big pretrained models,
Deep NNs in practice

Unclear about
Why many tricks in DL
improve performance

40Take-home messages

¡ Deep neural networks are universal approximators

¡ Theoretically clear about:
¡ Approximation ability
¡ Optimization (learning process)

¡ Long-standing open challenge about Generalization ability

