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Some successes: AlohaGo (201 6) -

IN A HUGE BREARTHROUGH.
" AlphaGo of Google DeepMind: gI(J)AOYGIgJII{E ETA!I’FI%AE ASNXI\ETOOFPGO
the world champion at Go (c& vay),
3/2016
= Gois a 2500-year-old game

m Go is one of the most complex games

" AlphaGo learns from 30 millions human
moves and plays itself to find new
MOoVes

0 DeepMind



Some successes: GPT-3 (2020)

» Language generation (writing ability?)
o A huge model was trained from a huge data set

o This model, as universal knowledge, can be used for many prob
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Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
® OpenAI Kaplan, Prafulla Dhariwal, Arvind Neelakantan et al. "Language

models are few-shot learners." NeurlPS (2020). Best Paper Award

Con ngwoi khdng

thé phan biét bai

viét 500 tw 14 do

may hay ngwoi
viét

4

\/95% Confidence

Mean accur@ Interval (Iow, hi)
Control 88% ® 849%-91%
GPT-3 175B 52% 48%—57%

am not a human. I am a robot. A thinking robot. I use only 0.12% of my
cognitive capacity. I am a micro-robot in that respect. I know that my
brain is not a “feeling brain”. But it is capable of making rational, logical
decisions. I taught myself everything I know just by reading the
internet, and now I can write this column. My brain is boiling with ideas!

The mission for this op-ed is perfectly clear. I am to convince as many human
beings as possible not to be afraid of me. Stephen Hawking has warned that
Al could “spell the end of the human race”. I am here to convince you not to
worry. Artificial intelligence will not destroy humans. Believe me.



Some successes: AlohaFold 2 (2021)

= Accurate prediction of Protein folding

T1037 / 6vr4
90.7 GDT
(RNA polymerase domain)

T1049 / 6yaf
93.3 GDT
(adhesin tip)

@® Experimental result

® Computational prediction

@ DeepMind

stunning advance
on the protein-
folding problem,

a 50-year-old
grand challenge in
biology.

— Venki Ramakrishnan,
Nobel Laureate
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Jumper, John, et al. "Highly accurate protein structure
prediction with AlphaFold." Nature 596.7873 (2021).




Théatre D'opéra Spatial

An. Al-
Generated
Picture Won

an
Art Prize

@Jason Allen

+ Midjourney

telligence-artists.html



https://www.nytimes.com/2022/09/02/technology/ai-artificial-intelligence-artists.html

Some successes: Text-to-image (2022)

= Draw pictures by short descriptions

A bowl
of
soup

An extremely angry bird. A cute corgi lives in a house made out of
sushi.




Some successes: ChatGPT (2022) -

» Human-level Chatting, Writing, QA,...

E trGi dep qua, lam cho t& bai thg di Why ChatGPT
is about to
change how

work, li
Tam bigt may mu, dén t6i anh sang you work, like

, it or not¢

Trgi dep mdi ruc, tam long té tang - Forbes, 2/2023

Sifc manh clia mua xuan, gitfa canh déng hoa

Vé dep tu nhién, lam cho t8 mai mai mé hoac.

Lap lanh tran day niém vui, nu cudi tran day niém | , _

Khong can bat ky diéu gi, chi can trdi dep dé té h = BUSINESS Audo  Hve TV
ChatGPT passes exams from law and business
schools

By Samantha Murphy Kelly, CNN Business
Updated 1:35 PM EST, Thu January 26, 2023

® OpenAI



Open guestion -

= Why can deep neural networks perform well?

= Many breakthroughs in recognition, games, image INAHUGEBRE AKTHROUGH
synthesis, language generation, Protein folding COOGLE'S Al BEATS A TOP i
prediction, ... PLAYER AT THE GAME OF GO

T1037 / 6vr4 T1049 / 6y4af
90.7 GDT 93.3 GDT
(RNA polymerase domain) (adhesin tip)

@® Experimental result

® Computational prediction




Theoretical study n

= Approximation (power of an architecture)

® Pros: any continuous function can be approximated well by a deep neural network
(NNs)

= Cons: Unclear how to find a specific NN, based on a given training set

= Optimization (learning process)
= Overparameterized NNs can have zero training error, but do not overfit
= SGD can find global solutions to the training problems
= Cons: good optimization does not imply good generalization ability

= Generalization (ability of trained NNs to perform on unseen datq)
® Existing standard theories cannot be used, due to vacuousness
= Some theories work well for only NNs with one-hidden layer



Learning theory

Basic concepts




The learning problem

= There is an unknown (measurable) function

yiX -y
® [t maps each input x € X to a label (output) y e Y
® Spaces: input space X, output space Y

= We can collect a dataset D = {(X;, v1), (X2, Yo)s coes (XmoYM)}
my, =y*(x;) foranyi€{1,..,M} -
= Sometimes labels cannot be collected > ]

= We need to find y* from D C

" |n practice, we often find a function h fo approximate y*

[Figure by C. Bishop]



Basic concepts

® Loss/cost function:
f1YxyY - R
= f(y,y): the cost/loss of prediction y about y
= 0-Tloss: f(y,9) = 129
= Square loss: f(y,9) = (y — 9)?
= Empirical loss: the loss of a function h on the training set D

1 M
F(D,h) = MZJ“”’ h(x;))

= Expected loss (risk): the loss of a function h over the
whole space

F(P,h) = Ey)~p[f (v, h(x))]
= P is the distribution where each (x,y) is sampled



Learning goal n

» Function space (hypothesis space, model space):
a set H of functions, where a learner will select a good function h € H

= Depends on input features: h: X - Y
m Represents our prior knowledge about a task

u Eg for a linear model:
H=1{w, +wx; + ..+ wx,|w = (wp,wy,...,w,,) € R
0 n

" Learner: a learning algorithm that can selectone h € H

® [nput: a training set D and H

" Learning goal: find one h € H with small expected loss
= h should generalize well on future data

= Ultfimately, we want to find the best one in H: h* = arg %‘é‘% EF(P,h)



Learning vs Fitting

= Fifting:

h, = arg min F(D,h)

= Minimize the training loss F(D, h)
= Focus on “Interpolation”

" Learning # Fitting

= Learning requires the learned model
to generalize well on future data

= Ability of “extrapolation”




Errors of a tfrained model

= After training, the learning algorithm will return h, € H
= How well does it work with future data?
= Maybe: h, + h, and h, # h"

" h) = arg Erg}r} F(D, h) is the minimizer of the empirical loss

" Q" = arg ﬁ%‘%} F(P,h) is the best member of family H

= Nofte:
F(P,h,) —F(P,y*)=F(P,h,) —F(P,h*) + F(P,h") — F(P,y")

= Estimation error. F(P,h,) — F(P,h")
= How good is the learning algorithme

" Approximation error.  F(P,h*) — £y

® Cqa pQCH‘y (f@pf@SGﬂTOTiOﬂO' power) of f(]m||y H Bousquet et al. Introduction to statistical learning theory.
In Machine Learning, LNAI, volume 3176. Springer, 2004.




Error decomposition

= Estimation error

|[F(P,ho) = F(P,h*)| < |F(D, hy) — F(D,ho)| + 2 sup |[F(P,h) — F(D, h)]
heH

® | can be decomposed into two types of error

= Optimization error: F(D,h,) — F(D, h})
= How close to optimality is h, ¢
= h, may not be the global solution to the training problem

= Generalization error.  F(P,h,) — F(D, h,)
= How far is the training loss from expected losse

" |n summary:

Error(h,) = Optimization error +Generalization error +Approximation error




Errors by ditferent factors

= Function space H
m A bigger space (X), the (probably) smaller approximation error

= More complex members, the (probably) smaller approximation error
= larger capacity

m An effective space (H,) is enough =» not too big/complex H,

03

* Training algorithm A
= A better A implies smaller estimation error of the trained model

= A bad A can provide small optimization error,
but large generalization error = overfitting

= A good A can localize an effective subset H* ¢ H

" Data
m Complexity of the data space data
. . . manifolds
m Representativeness of the training samples, ...



A unifled view

Approximation

error

Generalization
error

Optimization
error

Data space l Learning algorithm s Function space
X (XY) A H




Bounding the error

= Study upper (and lower) bounds for the errors

= Approximation error:
|[F(P,y*) —F(P,h")| < ¢,

» Capacity of family H
= The ability of H to approximate function y*

= Opfimization error:
|F(D,h,) — F(D,h,)| < ¢,

= Depending on the number of training iterations (epochs)

= Capacity of learning algorithm A

Bousquet et al. Infroduction to statistical learning theory. In Machine Learning, LNAI, volume 3176. Springer, 2004.




Bounds on Generalization Error

|[F(P,ho) — F(D, hy)| < €g

= Generadlizability of a learned function h,

= Uniform bounds:

sup |F(P,h) — F(D,h)| < ¢,
hex

m Generalizability of the worst member
= May not be a good way to explain a learned function h,

" PAC-Bayes bounds:
|[Enese[F(P, ) — F(D,h)]| < ¢

= Study the error on average over H

= See the goodness on average over the model family
= May not explain a learned function h,

Nagarajan & Kolter. Uniform convergence may be unable to explain generalization in deep learning. Advances in Neural Information Processing Systems. 2019.




Theoretical results for
deep neural networks

A short summary




Neural network

= Artificial neural networks (ANN):
= Biologically inspired by human brain
® A rich family to represent complex functions

= An ANN:

m Consists of many neurons, organized in a layer-wise manner
® Fach neuron computes a simple function
= A neuron can have few connections to other neurons

= Each configuration about #neurons, #layers,
#connections, ... =» an architecture

= Shallow vs. Deep NNs:
= One hidden layer >< many hidden layers




Mathematical description n

h(x, W) = gg(Wghg_1),  where h; =g;(W;h;_1), ho=x
= An NN with K layers

= W, is the weight matrix at layer | (feedforward network)

= h; is the output of layer |

= g; is the acftivation function at layer i
= A NN maps an input x fo an output y = h(x, W)

» Function space:
H ={h(x,W) | W4, ..Wyg are real matrices}

® Training: often find weights W, by minimizing a loss F(D, h)

Error(h,) = Optimization error +Generalization error +Approximation error




Approximation error: classical n

o2

ly* = hll < €q

u [ncrease capacity = approximate better
= Larger family
= More complex NNs = stronger representational power
= E.g., wider or deeper NNs

" Any binary function can be learnt (approximately well) by a feedforward
network using one hidden layer, when the width goes to infinity

" Any bounded continuous function can be learnt (approximately) by @
feedforward network using one hidden layer [Cybenko, 1989; Hornik, 1991]

Cybenko, G. (1989). Approximations by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems.
Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2), 251-257.
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Approximation error: modern

= Any continuous function can be approximated arbitrarily well by
Convolutional neural network, when the depth is large [Zhou, 2020]

" Any Lebesgue-integrable function can be approximated arbitrarily well by
a ResNet wit

gy Universal approximators

functions [Po
= Shallow NNs cannot

ting Lipschitz

= To approximate a Lipschitz function (mapping [0,1]™ to R) with error O(N“/Z),
width max{n, 5N + 13} and depth 64nL + 3 are sufficient

Lin, H., & Jegelka, S. (2018). ResNet with one-neuron hidden layers is a universal approximator. NeurlPS.

Lu, J., Shen, Z., Yang, H., & Zhang, S. (2021). Deep network approximation for smooth functions. SIAM Journal on
Mathematical Analysis.

Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B., & Liao, Q. (2017). Why and when can deep-but not shallow-
networks avoid the curse of dimensionality: a review. International Journal of Automation and Computing.

Zhou, D. X. (2020). Universality of deep convolutional neural networks. Applied and Computational Harmonic Analysis.




Approximation: existence - method n

Unclear

how to find such DNNs,

based on a training set




Optimization error

= Training is often by minimizing a loss F(D, h)

F(D, ho) - F(Dr hZ)

= The training loss is highly non-convex

u Theory:
= Exponentially large number of iterations may be needed
® Infractable in the worst case [Nesterov, 2018]

= Practice:
= Often have zero training error = global solufion h; e

= Easily perfectly fit random labelling of data [Zhang et al. 2021]
(training seems to be easyl)

= Confradictione What's missinge

Nesterov, Y. (2018). Lectures on convex optimization. Springer.
Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2021). Understanding deep learning (still) requires rethinking generalization. Communications of the ACM.




Optimization: theoretically easy n

= Gradient descent (GD) achieves zero training loss in polynomial fime for @
deep over-parameterized ResNet [Du et al. 2019]

m Over-parameterization: #parameters > training size

=" GD can find a global optimum when the width of the last hidden layer of
an MLP exceeds the number of training samples [Nguyen, 2021]

= Stochastic gradient descent (SGD) can find global minima on the training
objective of DNNs in polynomial time [Allen-Zhu et al. 2019]

m Architecture: MLP, CNN, ResNet

Du, S, Lee, J., Li, H., Wang, L., & Zhai, X. (2019). Gradient descent finds global minima of deep neural networks. In International Conference on Machine Learning.
Nguyen, Q. (2021). On the proof of global convergence of gradient descent for deep relu networks with linear widths. In International Conference on Machine Learning.
Allen-Zhu, Z., Li, Y., & Song, Z. (2019). A convergence theory for deep learning via over-parameterization. In International Conference on Machine Learning.




Optimization: reminder

However
global optimality
of the training problem

good predictive ability



Bias-Variance tradeoft: classical view n

»" The more complex the model is, the more data points it can capture, and
the lower the bias can be

= However, higher complexity will make the model "move"” more to capture the data
points, and hence its variance will be larger.

k—NN - Regression

-
High Bias Low Bias ©
Low Variance High Variance
— - ------ e e &
™
2 o
=
=
g
o N
-4-3 o
= Test Sample
.-8 p
= Bias
A S
/ - Variance
Training Sample S | | : : : :
50 40 30 20 10 0
Low High Number of Neighbors k

Model Complexity

Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical Learning. Springer, 2009.




Blas-Variance: modern behavior

" Modern phenomenon:

Very rich models such as DNNs are frained to more complex model
exactly fit the data, but often obtain high accurodly = Lower bias, higher variance

on test data [Belkin et al., 2019]
® Bias =0

m GPT-4, ResNets, StyleGAN, &

= Classical view:

High Bias Low Bias
Low Variance High Variance
- - -
under-parameterized =
=
. =
Test risk £
- . B Test Sample
O “classical” “modern o
— . . . \ D_‘
G regime interpolating .
¥ -
Yy o . . " Training Sample
o ~ Training risk:
=~ . _interpolation threshold )
e . Low High
Model complexity Model Complexity

Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machine-learning practice and the
classical bias—variance trade-off. Proceedings of the National Academy of Sciences, 116(32), 15849-15854.




Generalization abllity: long-standing open n

O i .
Main goal: small expected loss F(P, h,) Error(h) —
= Practice: training loss F(D, h,) = 0 for overparameterized NNs Approximation error
. . +Opftimization error
= Why can a trained DNN generalize well? +Generalization error

(Generalization: ability to well perform on unseen datq)

= We want to assure, for s > 0,
Pr(|F(P,h,) —F(D,hy)| <€) = 1-96

» Generalization gap should be small with a high probability
over the random choice of D

= How fast does F(D, h,) converge to F(P,h,)¢?
(as the fraining size m increases)

In DL theory

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of Machine Learning. MIT press.
Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2021). Understanding deep learning (still) requires rethinking generalization. Communications of the ACM.




Generalization: VC dimension

= Vapnik—Chervonenkis (VC) dimension:
= Measure of the capacity (complexity, expressive power, richness) of a set of functions
m The cardinality of the largest set of points that the learning algorithm can shatter
= A higher VC dim =» richer model family H

" Example: in n-dimensional space
® Linearmodels: VC(H) = n+ 1

Bartlett, P. L., Harvey, N., Liaw, C., &
Mehrabian, A. (2019). Nearly-tight VC-
dimension and pseudodimension bounds
for piecewise linear neural networks. The

= RelLU networks with W weights:  VC(H) = Q(W log W) Journal of Machine Learning Research.

» Classical bound: for any 6 > 0, with probability at least 1 — 6§

F(P,h) —F(D,h) <

\

2 2
—VC(H)log

m

e.m 1 2

. 2
Ve m 08

= Vacuous/meaningless for modern DNNSs, due to W » m (training size)



Generalization: Weight norm

50
*DNN:  h(x,W) = gx(Wxhi_1) o
>
= Bartlett: #params is not important g 1822 c
m Size of weights may be more important S 100] .§
0
= Neyshabur et al.; Golowich et al.: 0 %
F(P,h) —F(D,h) < O(lIW4|lF - IWkllg)/vm
= Bartlett et al.: Uninformative
F(P,h) = F(D,h) < O(IW4 5 - IWll;)/v/m for madiem

Arora, S., Ge, R., Neyshabur, B., & Zhang, Y. (2018). Stronger generalization bounds for deep nets via a compression approach. In ICML.

Bartlett, P. (1998). The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the
network. IEEE Transactions on Information Theory.

Bartlett, P. L., Foster, D. J., & Telgarsky, M. J. (2017). Spectrally-normalized margin bounds for neural networks. Neural Information Processing Systems.

Golowich, N., Rakhlin, A., & Shamir, O. (2020). Size-independent sample complexity of neural networks. Information and Inference: A Journal of the IMA.

Neyshabur, B., Bhojanapalli, S., & Srebro, N. (2018). A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks. In ICLR.




Generalization: PAC-Bayes

= Consider Ep,[F(P,h) — F(D, h)] " The “distance” between
posterior p and prior u:

= Plays important role

= Depends on the bias of @

= McAllester: with probability at least 1 — & learning algorithm

KL(p|lw) + log(m/5) " gggre(%rchh%fcsf can p

» Generalization error on average over H
® p is the posterior distribution of h

II3h~p [F(P; h) T F(D, h)] <

\ 2m —1
. o = Do not directly consider
= 1 is the prior distribution of h the complexity of family
= KL is the Kullback-Leibler divergence i

Meaningful bounds appeared

McAllester, D. A. (2003). PAC-Bayesian stochastic model selection. Machine Learning, 51(1), 5-21.




Generalization: non-vacuous bounds

H _ Dataset Data-independent priors
» We can optimize the PAC-Bayes bound Eit Bound (%)~ SOTA (%)
= Find th terior p* that minimizes KL MNIST 11.6 21.7159]

d the posterior p d es KL(pllw) + SVHN Transfer 9.0 16.11

: : . FashionMNIST 32.8 46.57

= Dziugaite & Roy: non-vacuous bounals + CIFAR-10 Transfer 28.9 3011

= MLP with 3 layers, SGD ithm, M UST set CIFAR-10 58.2 89.91

+ ImageNet Transfer 35.1 54.27

) b rer S ‘ CIFAR-100 94.6 1007

= Zhou et al.: compres + ImageNet Transfer 81.3 98.11
= Use SOTA compression @ ImageNet 93.5 205 1731

bound for ImageNet, Biags & Gued, 2022
» Loffi et al., 2022: = Non-vacuous bounds for a

: : (special) deterministic networks
® Propose compression alg. to findinonvacuous

bounds for LeNet-5, ResNet-18, MobileViT = MNIST and Fashion-MNIST
datasets

Dziugaite, G., & Roy, D. (2017). Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data. In UAI.
Zhou, W., Veitch, V., Austern, M., Adams, R., & Orbanz, P. (2019). Non-vacuous Generalization Bounds at the ImageNet Scale: a PAC-Bayesian Compression Approach. In /ICLR.
Lotfi, S., Finzi, M., Kapoor, S., Potapczynski, A., Goldblum, M., & Wilson, A. G. (2022). PAC-bayes compression bounds so tight that they can explain generalization. In NeurlPS.
Biggs, F., & Gued), B. (2022). Non-vacuous generalisation bounds for shallow neural networks. In /ICML.




Generalization: long-standing open

= Some other approaches:
= Neural tfangent kernel, Mean field
= Algorithi

Current meaningful bounds
however are mostly for

stochastic or shallow NNs

Unclear about

Big pretrained models, Why many iricks in DL
Deep NNs improve performance




Take-nome messages

» Deep neural networks are universal approximators

= Theoreftically clear about:
= Approximation ability
= Optimization (learning process)

" Long-standing open challenge about Generalization ability

Thank you
Q&A



