
Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Data management in the era of bigdata and
machine learning

Farouk Toumani

LIMOS, CNRS, Clermont Auvergne INP, UCA

Summer School
Modern Machine Learning: Foundations and Applications

School of Information and Communication Technology
Hanoi University of Science and Technology

September 11th, 2023

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Modern advanced analytics

⇒ Software systems for advanced analytics over large and
complex datasets are becoming critical for digital applications

Machine Learning (ML) has become quite popular
On track to impact many industries
Needs to process large amounts of data
Arbitrary complex processing scripts

⇒ Several ML frameworks emerged in the recent years and are
being widely adopted

Support (advanced) data analytics: statistical analysis, data
mining, deep learning (DL), . . .
Equiped with high-level APIs to express computations over
(large) datasets
Execution engine to run analytical operations efficiently

⇒ High-value data in the enterprise is typically stored in
databases, data warehouses, or data lakes

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Modern advanced analytics

⇒ Software systems for advanced analytics over large and
complex datasets are becoming critical for digital applications

Machine Learning (ML) has become quite popular
On track to impact many industries
Needs to process large amounts of data
Arbitrary complex processing scripts

⇒ Several ML frameworks emerged in the recent years and are
being widely adopted

Support (advanced) data analytics: statistical analysis, data
mining, deep learning (DL), . . .
Equiped with high-level APIs to express computations over
(large) datasets
Execution engine to run analytical operations efficiently

⇒ High-value data in the enterprise is typically stored in
databases, data warehouses, or data lakes

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Modern advanced analytics

⇒ Software systems for advanced analytics over large and
complex datasets are becoming critical for digital applications

Machine Learning (ML) has become quite popular
On track to impact many industries
Needs to process large amounts of data
Arbitrary complex processing scripts

⇒ Several ML frameworks emerged in the recent years and are
being widely adopted

Support (advanced) data analytics: statistical analysis, data
mining, deep learning (DL), . . .
Equiped with high-level APIs to express computations over
(large) datasets
Execution engine to run analytical operations efficiently

⇒ High-value data in the enterprise is typically stored in
databases, data warehouses, or data lakes

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Machine learning pipeline

Several pre-processing steps (from Google)

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Machine learning pipeline

From Vetica

9www.vertica.com

In-Database Machine Learning Features

“Using Vertica’s User-
Defined Extensions, we
have already builta
bespoke lowpass filter
to runagainst our data
—thatensures top
analytical performance
without having to
move the data to other
systems or tools.”

PhilCharles
Technical Manager
Jaguar TCS Racing
Formula E

Figure. 1 End-to-end machine learning management.Fromdata prep to deployment,
Vertica supports the entiremachine learning process

Integration with External MachineLearning
Vertica supports the entire machine learning process. However, in
today’s business world, multiple tools and programming languages are
often used within the same organization for different machine
learning purposes. Vertica allows you to work with these tools while also
leveraging powerful capabilities, such as model managementand distributed
execution on verylargedatasets.

User-Defined Extensions (UDxs)
Vertica connects to hundreds of applications, data sources, ETL tools, and
visualization tools—and what itdoesn’t connect to out of thebox can be
easily integrated. A UDx allows you to develop your own tools for the
Vertica Analytics Platform, including newtypesof dataanalysisandtheability
to parseandload new typesof data.UDxscan bedevelopedinC++,Java,
Python,orR usingVertica’s powerful SDK.

The broad arrayof user-defined capabilities (functions, transforms,
aggregates, analytics, and loading) leverages the MPP capabilities of
Vertica, increasing the power and flexibility of procedural code by
bringing it closer to the data (structured, semi-structured, or
unstructured). Vertica’s user interface makes it easy to deploy and use
procedural extensions, which simplifies operational practices and promotes code
reuse.

Predictive ModelMarkup Language(PMML) Support
With Vertica’s PMML model import capability, users can build a
machine learning model inthetools of theirchoice andthenbringthatmodel to
Vertica for management, archiving, and prediction on very large data sets. As a
distributed analytical database, Vertica is often home to the most
recent (hot) data, or real time data streaming in. Bringing models
close to where that data resides provides fast andtimely predictions.

VerticaPyisan open-
source library that allows
you to use a Jupyter
notebook and Python
style code to access
the in-database Vertica
functionality that is
similar to Pandas and
SciKit Learn. Conduct
exploratory and
interactive data science
on whole data sets
stored in Vertica or
accessible to Vertica's
distributed query
engine.

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Machine learning pipeline

A cumberscome pre-processing process

Transfer cost: move the (complete) data from the database
server to the client machine
Limited client memory: data might exceed typical client
memory amounts
Memory management: e.g., Pandas operations often create
copies of the internal data and therefore occupy more of the
client’s RAM

80% of ML users time/effort (often more) spent on data
issues!

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Machine learning pipeline

25

 Real-World ML 101

https://visit.figure-eight.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf

80% of ML users’ time/effort (often more) spent on data issues!
25

 Real-World ML 101

https://visit.figure-eight.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf

80% of ML users’ time/effort (often more) spent on data issues!

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

The rise of Artificial Intelligence

Data-centric AI
Model-centric lifecycle

Primarily focus on identifying more effective models to
improve AI performance while keeping the data largely
unchanged
Overlooks the potential quality issues and undesirable flaws of
data (missing values, incorrect labels, and anomalies, . . .)

Data-centric lifecycle

Systematic engineering of data to build AI systems
⇒ Shifting the focus from model to data
⇒ Need of a robust and scalable data management system

Declarative AI
Next wave of ML systems: allow a larger amount of people,
potentially without coding skills, to perform ML tasks [MR21a]

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

What can data management do for machine learning?

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Outline

1 Data management: core concepts and technologies

2 The era of big data

3 Machine learning in data management systems

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

What is data management?

In the early days, data-centric applications were built directly on
top of file systems, which leads to:

Data redundancy and inconsistency

Difficulty in accessing data

Data isolation

Integrity problems

⇒ Database and Database Managament Systems (DBMSs)

⇒ Core component of most (modern) computer applications

⇒ Data-centeric AI

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Some foundational principles

Model to abstract how data is represented and manipulated

⇒ Logical and physical data independence

Declarative query language

Automatic optimization at different levels

Architecture of the system: disk-based vs. memory-based,
centralized vs. distributed vs. parallel, . . .
Query processing

Concurrency control

Automatic failure recovery

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Storage hierarchy

Source: https://cs.brown.edu/courses/csci1310/2020/assign/labs/lab4.html

Farouk Toumani Data management in the era of bigdata and machine learning

https://cs.brown.edu/courses/csci1310/2020/assign/labs/lab4.html

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

DBMS’s design goals

Manage data that exceed the amount of memory available

⇒ Disk-based architecture: reduce the number of I/O
operations

Temporal control

When the data gets read or written to the disk?
⇒ using buffering techniques

Spatial control

Where to store the data on the disk?
⇒ Using the DBMS’s physical model

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Buffering

Use a buffer cache to reduce the number of I/O operations
Reading from a buffer cache instead of physically reading from
the disk

⇒ Takes benefit from concurrent accesses to shared data
⇒ Read-ahead (early reads, speculative reads): detailed future

access pattern knowledge is available to the DBMS

Writing in the buffer cache

⇒ Lazy writes (write-behind, delayed, batched writes)

A logic to control when to write blocks to disk to ensure the
correctness of the database

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

DBMS Architecture

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Spatial control

Access patterns

Random access
Sequential access

⇒ Sequential bandwidth to and from disk is between 10 and 100
times faster than random access, and this ratio is increasing

⇒ Physical model to control the spatial locality
Logical storage structures

Tablespaces
Database blocks
Extents
Segments : Table, Index, cluster, . . .

Physical storage structures: files

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Index
Example:Sparse index

11.2 Ordered Indices 479

Consider a (printed) dictionary. The header of each page lists the first word
alphabetically on that page. The words at the top of each page of the book index
together form a sparse index on the contents of the dictionary pages.

As another example, suppose that the search-key value is not not a primary
key. Figure 11.4 shows a dense clustering index for the instructor file with the
search key being dept name. Observe that in this case the instructor file is sorted
on the search key dept name, instead of ID, otherwise the index on dept name
would be a nonclustering index. Suppose that we are looking up records for
the History department. Using the dense index of Figure 11.4, we follow the
pointer directly to the first History record. We process this record, and follow the
pointer in that record to locate the next record in search-key (dept name) order. We
continue processing records until we encounter a record for a department other
than History.

As we have seen, it is generally faster to locate a record if we have a dense
index rather than a sparse index. However, sparse indices have advantages over
dense indices in that they require less space and they impose less maintenance
overhead for insertions and deletions.

There is a trade-off that the system designer must make between access time
and space overhead. Although the decision regarding this trade-off depends on
the specific application, a good compromise is to have a sparse index with one
index entry per block. The reason this design is a good trade-off is that the
dominant cost in processing a database request is the time that it takes to bring
a block from disk into main memory. Once we have brought in the block, the
time to scan the entire block is negligible. Using this sparse index, we locate the
block containing the record that we are seeking. Thus, unless the record is on an
overflow block (see Section 10.6.1), we minimize block accesses while keeping
the size of the index (and thus our space overhead) as small as possible.

10101
32343
76766

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

Figure 11.3 Sparse index.

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Index
Example: Two level sparse index

11.2 Ordered Indices 481

…

…
…

…
outer index

index
block 0

index
block 1

data
block 0

data
block 1

inner index

Figure 11.5 Two-level sparse index.

To deal with this problem, we treat the index just as we would treat any other
sequential file, and construct a sparse outer index on the original index, which we
now call the inner index, as shown in Figure 11.5. Note that the index entries are
always in sorted order, allowing the outer index to be sparse. To locate a record,
we first use binary search on the outer index to find the record for the largest
search-key value less than or equal to the one that we desire. The pointer points
to a block of the inner index. We scan this block until we find the record that
has the largest search-key value less than or equal to the one that we desire. The
pointer in this record points to the block of the file that contains the record for
which we are looking.

In our example, an inner index with 10,000 blocks would require 10,000 entries
in the outer index, which would occupy just 100 blocks. If we assume that the
outer index is already in main memory, we would read only one index block for
a search using a multilevel index, rather than the 14 blocks we read with binary
search. As a result, we can perform 14 times as many index searches per second.

If our file is extremely large, even the outer index may grow too large to fit in
main memory. With a 100,000,000 tuple relation, the inner index would occupy

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Index
Example:B+-Tree index

488 Chapter 11 Indexing and Hashing

Gold Katz Kim Mozart Singh Srinivasan Wu

Internal nodes

Root node

Leaf nodes

Einstein

Einstein El Said

Gold

Mozart

Srinivasan

Srinivasan Comp. Sci. 65000
Wu Finance 90000
Mozart Music 40000
Einstein Physics 95000
El Said History 80000
Gold Physics 87000
Katz Comp. Sci. 75000
Califieri History 60000
Singh Finance 80000
Crick Biology 72000
Brandt Comp. Sci. 92000

15151

10101

Brandt Califieri Crick

12121

22222
32343
33456
45565
58583
76543
76766
83821
98345 Kim Elec. Eng. 80000

Figure 11.9 B+-tree for instructor file (n = 4).

Observe that the height of this tree is less than that of the previous tree, which
had n = 4.

These examples of B+-trees are all balanced. That is, the length of every path
from the root to a leaf node is the same. This property is a requirement for a B+-
tree. Indeed, the “B” in B+-tree stands for “balanced.” It is the balance property of
B+-trees that ensures good performance for lookup, insertion, and deletion.

11.3.2 Queries on B+-Trees

Let us consider how we process queries on a B+-tree. Suppose that we wish to
find records with a search-key value of V. Figure 11.11 presents pseudocode for
a function find() to carry out this task.

Intuitively, the function starts at the root of the tree, and traverses the tree
down until it reaches a leaf node that would contain the specified value if it exists
in the tree. Specifically, starting with the root as the current node, the function
repeats the following steps until a leaf node is reached. First, the current node
is examined, looking for the smallest i such that search-key value Ki is greater

Brandt CrickCalifieri Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

El Said Mozart

Figure 11.10 B+-tree for instructor file with n = 6.

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Clustered tables
Example

Source: https://docs.oracle.com/en/database/oracle/oracle-database/19/
cncpt/tables-and-table-clusters.html#

GUID-DCDD2E34-365B-49EB-8931-24201E49C8FD

Farouk Toumani Data management in the era of bigdata and machine learning

https://docs.oracle.com/en/database/oracle/oracle-database/19/cncpt/tables-and-table-clusters.html#GUID-DCDD2E34-365B-49EB-8931-24201E49C8FD
https://docs.oracle.com/en/database/oracle/oracle-database/19/cncpt/tables-and-table-clusters.html#GUID-DCDD2E34-365B-49EB-8931-24201E49C8FD
https://docs.oracle.com/en/database/oracle/oracle-database/19/cncpt/tables-and-table-clusters.html#GUID-DCDD2E34-365B-49EB-8931-24201E49C8FD

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Query processing

SQL is a declarative language

⇒ Physical data Independence
⇒ Needs to be compiled into a program

⇒ Opens rooms for optimization

Compiles the query into a program that consumes the least
ressources

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Query processing

 © Surajit Chaudhuri PODS-98 6/1/98 4

Outline
Preliminaries

Relational query engine
“Programs” over relational query
engines (operator trees)

Query Optimization Framework
System R optimizer
Modern Optimizers
How to interact with Optimizers
Active Areas of work
Conclusion

 © Surajit Chaudhuri PODS-98 6/1/98 5

Relational DBMS Components

Storage Engine
 (Manages Tables and Indexes)

 Execution Engine

Query Optimizer

Parsing

SQL

Relational
Engine

 © Surajit Chaudhuri PODS-98 6/1/98 6

Storage Structures
Tables
Indexes

Columns
Single column, Multiple columns

Type
B+ indexes, Bitmap indexes, Hash indexes

Clustering
Clustered, Non-clustered

Implied “index-evaluable” predicate

© Surajit Chaudhuri – PODS-98

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Query processing

Parse query

SQL query

Select logical
query plan

Select physical plan

Execute plan

Query expression
tree

Logical query plan

Physical query plan

Query
optimisation

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Query plan

Logical query plan

Relational algebra: σ, π, ./,∪,∩, . . .
Physical query plan

Physical operators

Sequential scan
Index scan
Filter
Join: Nested-Loop, Sort-Merge, Indexed Nested-loop. . .

⇒ Operator trees

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Logical query optimization
Example

Select A.NAME

From ARTIST, APPEARS, ALBUM

Where ARTIST.ID=APPEARS.ARTIST ID AND

APPEARS.ALBUM ID=ALBUM.ID AND ALBUM.NAME="Andy’s OG Remix"

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Query optimization
Example

Rule-based optimization

Rules are based on the algebraic properties of the operators

Strategy of the application of the rules based on heuristics

Source: https://15445.courses.cs.cmu.edu/fall2022/slides/14-optimization.pdf

15-445/645 (Fall 2022)

P R E D I C AT E P U S H D O W N

11

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

ARTIST APPEARS ALBUM

Move the predicate to the lowest
applicable point in the plan.

×

ARTIST.NAMEp

×

ARTIST.ID=APPEARS.ARTIST_IDs
ALBUM.NAME="Andy's OG Remix"s
APPEARS.ALBUM_ID=ALBUM.IDs

15-445/645 (Fall 2022)

R E P L AC E C A RT E S I A N P RO D U C T S

12

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Replace all Cartesian Products
with inner joins using the join
predicates.

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ALBUM.NAME="Andy's OG Remix"s
×

ARTIST.ID=APPEARS.ARTIST_IDs

APPEARS.ALBUM_ID=ALBUM.IDs
×

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Query optimization
Example

15-445/645 (Fall 2022)

P RO J E C T I O N P U S H D O W N

13

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Eliminate redundant attributes
before pipeline breakers to
reduce materialization cost.

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ARTIST.ID=APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝
ALBUM.NAME="Andy's OG Remix"s

15-445/645 (Fall 2022)

P RO J E C T I O N P U S H D O W N

13

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Andy's OG Remix"

Eliminate redundant attributes
before pipeline breakers to
reduce materialization cost.

ARTIST APPEARS ALBUM

ARTIST.NAMEp

ALBUM.NAME="Andy's OG Remix"s
IDpARTIST.NAME,

APPEARS.ALBUM_IDp

ID,NAMEp ARTIST_ID,
ALBUM_IDp

ARTIST.ID=
APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

Source: https://15445.courses.cs.cmu.edu/fall2022/slides/14-optimization.pdf

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Query optimization
Example - Eager/Lazy aggregation [YL95]

Eager Aggregation and Lazy Aggregation

Weipeng P. Yan Per-Bike Larson
Department of Computer Science,

University of Waterloo, Waterloo, Ontario, Canada N2L 3Gl
{pwyan,palarson}@bluebox.uwaterloo.ca

Abstract

Efficient processing of aggregation queries is
essential for decision support applications.
This paper describes a class of query trans-
formations, called eager aggregation and laty
aggregation, that allows a query optimizer to
move group-by operations up and down the
query tree. Eager aggregation partially pushes
a groupby past a join. After a group-by is
partially pushed down, we still need to per-
form the original groupby in the upper query
block. Eager aggregation reduces the number
of input rows to the join and thus may result
in a better overall plan. The reverse trans-
formation, lazy aggregation, pulls a group-by
above a join and combines two group-by op-
erations into one. This transformation is typ-
ically of interest when an aggregation query
references a grouped view (a view containing
a groupby). Experimental results show that
the technique is very beneficial for queries in
the TPC-D benchmark.

1 Introduction
Aggregation is widely used in decision support sys-
tems. All queries in the TPC-D[Raa95] benchmark
contain aggregation. Efficient processing of aggrega-
tion ,queries is essential for performance in decision
support applications and large scale applications.

Permission to copy without fee all or part of this material is
granted provided that the copies arc not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, 01 to republish, requires a fee
and/or special pcmzission from the Endowment.
Proceedings of the 21st VLDB Conference
Zurich, Swizerland, 1995

We proposed a new query optimization technique,
group-by push down and group-by pull up, which inter-
changes the order of group-by and joinspL94, YL95].
Groupby push down is to push groupby past a join.
Its major benefit is that the group-by may reduce the
number of input rows of the join. Group-by pull up is
to delay the processing of groupby until after a join.
Its major benefit is that the join may reduce the num-
ber of input rows to the group-by, if the join is selec-
tive. Figure 1 shows the idea of commuting group-by
and join. In Figure l(a), we join Table Tl(Gl,Jl,Sl)
and T2(G2,J2) on join columns Jl and 52 then group
the result on grouping columns Gl and G2, followed
by aggregation on Sl. Figure 1 (b) shows an alter-
native way where group-by is performed before join.
Note that group-by and join commutation cannot al-
ways be done. The necessary and sufficient condition
is provided in [YL94, YL95].

SUM(S1) +

@$jg Jl=J&

t sum(s1, AS ss/ z
Jl=JZa T T2

/‘\

WJ2)

Tl T2 Tl

(Gl,Jl,Sl) (G2,52) (Gl,Jl,Sl)

(a) Group-by Pull up (b) Group-by Push down

Figure 1: Group-by and Join Commutation
The technique to only partially push down a group-

by past a join can be extended. For some queries
containing joins and groupby, we can perform group
by on some of the tables, then the join, and finally
another group-by. The first groupby, which we call
eager group-by, reduces the number of input rows to
the join and thus may result in a better plan. We
call the groups generated by the early groupby par-
tial groups because they will be merged by the second

345

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Query optimization
Subqueries and aggregation[GLJ01]

Query: ”finds customers who have ordered more than
$1,000,000”

Database
Customer(c custkey, ...)

Orders(o ordkey, ..., o custkey)

Query
Select c custkey

From Customer

Where 1000000 <
(Select sum(o totalprice)

From Orders

Where o custkey = c custkey)

⇒ Correlated execution: the subquery is executed as many
times as there are employees

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Query optimization
Subqueries and aggregation[GLJ01]

Query: ”finds customers who have ordered more than
$1,000,000”

Database
Customer(c custkey, ...)

Orders(o ordkey, ..., o custkey)

Query
Select c custkey

From Customer

Where 1000000 <
(Select sum(o totalprice)

From Orders

Where o custkey = c custkey)

⇒ Correlated execution: the subquery is executed as many
times as there are employees

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Query optimization
Subqueries and aggregation[GLJ01]

Query: ”finds customers who have ordered more than
$1,000,000”

Database
Customer(c custkey, ...)

Orders(o ordkey, ..., o custkey)

Query
Select c custkey

From Customer

Where 1000000 <
(Select sum(o totalprice)

From Orders

Where o custkey = c custkey)

⇒ Correlated execution: the subquery is executed as many
times as there are employees

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Query optimization
Subqueries and aggregation[GLJ01]

Outerjoin, then aggregate
Select c custkey

from customer left outer join

orders on o custkey = c custkey group by c custkey

having 1000000 < sum(o totalprice)

Aggregate, then join
select c custkey from customer,

(select o custkey from orders group by c custkey

having 1000000 < sum(o totalprice)) as AggResult

where o custkey = c custkey

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Physical plans
Example

Cost-based optimization
Cardinality estimation for SQL expressions
Cost estimation for SQL execution plans (or partial plans)
A dynamic programming based algorithm to search the space
of execution plans

Artiste Album Appears

Table-scan Index-Scan Table-scan

Merge-Join

Index Nested loop

Π
One Pass

σOne Pass

Artiste Appears Album

Table-scan Table-scan Index-scan

Nested-Loop

Index Nested loop

Π
One Pass

σOne Pass

Sort

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

User Defined Functions (UDFs)

Complex processing tasks cannot be expressed in SQL

⇒ UDF: procedural extension of SQL

Support of various programming languages: PL/SQL,
Transact-SQL, Java, C#, Python, R, . . .
Widely used in practical applications: e.g., more than 10M of
T-SQL UDFs in use in the Microsoft Azure SQL database
service [RPE+17]

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

User Defined Functions (UDFs)
Example

Create function service level(int ckey) returns char(10) as

Begin

float totalbusiness; string level;

Select sum(totalprice) into :totalbusiness

From orders Where custkey=:ckey;

if(totalbusiness > 1000000) level = "Platinum";

else if(totalbusiness > 500000) level = "Gold";

else level = "Regular";

return level;

End

Query: Select custkey, service level(custkey) From customer

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

User Defined Functions (UDFs)
Example

Create function service level(int ckey) returns char(10) as

Begin

float totalbusiness; string level;

Select sum(totalprice) into :totalbusiness

From orders Where custkey=:ckey;

if(totalbusiness > 1000000) level = "Platinum";

else if(totalbusiness > 500000) level = "Gold";

else level = "Regular";

return level;

End

Query: Select custkey, service level(custkey) From customer

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

User Defined Functions (UDFs)
Pros and cons

(+) Achieves modularity and code reuse across SQL queries

(+) Enable to express complex business rules (and recently ML
algorithms)

(+) Support various programming languages

(-) Performance overhead due to the impedance mismatch
between two paradigms: declarative paradigm of SQL and
imperative paradigm of procedural code

Naive execution strategies: context switching, data copies,
data conversion, materialization of intermediate results, . . .
Limited query optimization

Semantics of UDF is not known to the optimizer
Cost-based optimization

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Optimization of queries with UDFs
Example of decorrelation of UDF Invocations [SRC+14]

With e as (Select custkey, sum(totalprice) as totalbusiness

From orders Group by custkey);

Select c.custkey,

Case

When e.totalbusiness > 1000000 Then "Platinum"

When e.totalbusiness > 500000 Then "Gold"

Else "Regular"

End as service

From customer c left outer join e on c.custkey=e.custkey;

Decorrelated query: more efficient execution plan

Set-oriented execution plan: expands the space of alternative
plans for the optimizer

Decorrelating UDF invocations is a complex task due to the
presence of various imperative constructs

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Optimization of queries with UDFs
Example of decorrelation of UDF Invocations [SRC+14]

With e as (Select custkey, sum(totalprice) as totalbusiness

From orders Group by custkey);

Select c.custkey,

Case

When e.totalbusiness > 1000000 Then "Platinum"

When e.totalbusiness > 500000 Then "Gold"

Else "Regular"

End as service

From customer c left outer join e on c.custkey=e.custkey;

Decorrelated query: more efficient execution plan

Set-oriented execution plan: expands the space of alternative
plans for the optimizer

Decorrelating UDF invocations is a complex task due to the
presence of various imperative constructs

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

User Defined Aggregation Functions (UDAFs)

Built-in aggregate functions: initially min, max, sum, count,
avg and now many other functions

UDF (c.f., pros and cons)

New mechanism: User Defined Aggregation function (UDAF)

Init: initialization
Accumulate: usually computes partial aggregation
(intermediate result)
Merge: merges two intermediate result (Optionnel)
Terminate: computes the final result

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

User Defined Aggregation Functions (UDAFs)
Example

The product function

public class Prod {
double temp;

public void Init() { temp = 1; }
public void Accumulate(double newVal) {

temp = temp * newVal; }
public double Terminate() { return temp; }
public void Merge(Prod other) {

temp = temp * other.temp; }
}

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Optimization of queries with UDAFs
Examples from [Coh06]

Select T1.G1,T2.G2, α(A1) From T1,T2

Where T1.J1 = T2.J2 Group By G1,G2

P Pa Pb Pc

Group By
G1, G2

Join

T1
(G1, J1, A1)

T2
(G2, J2)

J1=J2

T(Acc (A1,CNT))

Group By
G2, J2

COUNT(*) AS CNT

*
Group By
G1, G2

Join

T1
(G1, J1, A1)

T2
(G2, J2)

J1=J2

T(Acc (A1,CNT))

Group By
G2, J2

COUNT(*) AS CNT

*
Group By
G1, G2

Join

T1
(G1, J1, A1)

T2
(G2, J2)

J1=J2

T(Acc (Agg1,CNT)

Group By
G2, J2

COUNT(*) AS CNT

Group By
G1, J1

Acc (A1) AS Agg1

*Group By
G1, G2

Join

T1
(G1, J1, A1)

T2
(G2, J2)

J1=J2

T(Acc (Agg1,CNT)

Group By
G2, J2

COUNT(*) AS CNT

Group By
G1, J1

Acc (A1) AS Agg1

Group By
G1, G2

Join

T1
(G1, J1, A1)

T2
(G2, J2)

J1=J2

T(Acc (Agg1,CNT)

Group By
G2, J2

COUNT(*) AS CNT

Group By
G1, J1

Acc (A1) AS Agg1

*

Group By
G1, G2

Join

T1
(G1, J1, A1)

T2
(G2, J2)

J1=J2

(A1)
Group By
G1, G2

Join

T1
(G1, J1, A1)

T2
(G2, J2)

J1=J2

(A1)

Group By
G1, G2

Join

T1
(G1, J1, A1)

T2
(G2, J2)

J1=J2

T(Merge (Agg1)

Group By
G1, J1

Acc (A1) AS Agg1

Group By
G1, G2

Join

T1
(G1, J1, A1)

T2
(G2, J2)

J1=J2

T(Merge (Agg1)

Group By
G1, J1

Acc (A1) AS Agg1

Figure 1: Query plans for Q2, Q2-a (eager group-by), Q2-b (eager count) and Q2-c (double eager).

WHERE J1 = J2

GROUP BY G1, G2

Observe that G1 and G2 are grouping columns, J1 and J2

are join columns, A1 is the aggregated column and R1 and
R2 are the remaining columns in the table (which are not
used in the query).

Evaluating this query in a straightforward fashion results
in query plan P from Figure 1. We now discuss alterna-
tive query plans derived by three different transformations.
These query plans also appear in Figure 1. This figure is a
generalized version of a similar figure from [25].

Eager Group-By. An alternative way to evaluate Q2 is
to perform the group-by as early as possible. This can be
advantageous since the group-by operator generally reduces
the number of tuples in its input. In general, the eager
group-by transformation pushes the group-by below the join
operation. If there are several joins, the group-by can be
pushed below all, or some, of the joins. An eager group-by
of Q2 results in the following query Q2-a, whose query plan
Pa, appears in Figure 1.

Q2-a: SELECT G1, G2, T(Mergeα(Agg1))

FROM (SELECT G1, J1, Accα(A1) as Agg1

FROM T1

GROUP BY G1, J1),

T2

WHERE J1 = J2

GROUP BY G1, G2

Observe that eager group-by involves applying the aggregate
function early to some of the tables—in this case to T1.
However, several aggregate results may need to be combined
together to derive the final result of the query. In order to
be able to combine the aggregate results properly, we do
not actually apply α below the join. Instead, we apply Accα

(which is α without the application of T). Therefore, in the
result of the eager aggregation of the subquery, we retain
the values in the intermediate domain (i.e., the state of the
computation). Then, in the outer query we can combine the
intermediate results by using Mergeα. We derive the final
value by applying T to the results of Mergeα.

Eager Count. There may be many tuples in T2 that
agree with a single tuple of T1 on the join column. Each
value in column A1 is aggregated together as many times
as there are matching tuples in T2. Hence, the eager count

transformation first counts the number of matching tuples,
and then uses this count to compute the result of the aggre-
gate function. Similarly to eager group-by, the eager count
transformation also reduces the size of the intermediate re-
sults. Therefore, eager count sometimes proves a more ef-
ficient way to evaluate a query. This transformation uses
an expanding function to compute the actual result from
the count values. For our example query Q2, performing an
eager count results in the following query Q2-b, with query
plan Pb, in Figure 1.

Q2-b: SELECT G1, G2, T(Accα
" (A1,CNT))

FROM T1,

(SELECT G2, J2, COUNT(*) as CNT

FROM T2

GROUP BY G2, J2),

WHERE J1 = J2

GROUP BY G1, G2

Double Eager. The double eager transformation com-
bines the ideas of eager group-by and eager count by both
aggregating tuples from T1 and counting tuples from T2 be-
low the join. As before, we use Accα to perform the eager
aggregation. However, in this case we use Mergeα

" (instead
of Mergeα) to perform the final computation in the outer
query. This is necessary in order to take into consideration
the count values derived from the eager count. Applying
this transformation to Q2 yields the query Q2-c with query
plan Pc, in Figure 1.

Q2-c: SELECT G1, G2, T(Mergeα
" (A1,CNT))

FROM (SELECT G1, J1, Accα(A1) as Agg1

FROM T1

GROUP BY G1, J1),

(SELECT G2, J2, COUNT(*) as CNT

FROM T2

GROUP BY G2, J2),

WHERE J1 = J2

GROUP BY G1, G2

We now consider the practical implications of the three
transformations: eager group-by, eager count, double eager.
In particular, we answer the following question: Can these
three transformations be applied efficiently given the current
definition of a UDA?

We start by considering the eager group-by transforma-
tion. In order to perform this transformation, the query op-

55

Eager CountEager Group-BYInitial Plan Double Eager

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Big Data era

It is all about Vs . . .

Volume

Variety

Velocity

Veracity

. . .

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Why did data become big?

Modern society generates a huge amount of data

Technological (r)evolution: Storage (SSD, ..), networks and
telecommunications (Wifi, 3G, CPL etc.), Calculation
processors, Graphics cards, sensors, cameras, miniaturization,
reduction of energy consumption / price

Data acquisition: massive and in real time, Web, Invisible
computing, laptops, web, IoT, CPS (Cyber Physical Systems)

Connected world Networks (Cluster) of machines, Sensor
networks, Mobile networks, Social networks, Internet of things

Software/architecture developments: Virtualization,
services Computing grids, Cloud computing Software:
visualization, data analysis, simulation, learning, ..

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Why did data become big?

Modern society generates a huge amount of data

Technological (r)evolution: Storage (SSD, ..), networks and
telecommunications (Wifi, 3G, CPL etc.), Calculation
processors, Graphics cards, sensors, cameras, miniaturization,
reduction of energy consumption / price

Data acquisition: massive and in real time, Web, Invisible
computing, laptops, web, IoT, CPS (Cyber Physical Systems)

Connected world Networks (Cluster) of machines, Sensor
networks, Mobile networks, Social networks, Internet of things

Software/architecture developments: Virtualization,
services Computing grids, Cloud computing Software:
visualization, data analysis, simulation, learning, ..

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Data management in the era of big data

A huge amount of data that cannot be stored and
processed by traditional database solutions

Revitalization of research and development in data
management
New classes of data management systems

NoSQL wave
NewSQL data management systems

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

NoSQL data management systems

Different data models

Key-Value
Document
Wide-column
Graph
. . .

Main techniques

Sharding
Replication
Large shared nothing clusters
Limited queries capabilities

⇒ Horizontal scalability
⇒ Tolerance to failures
⇒ Trade-off Consistency, Availability, Partition-tolerance (CAP)

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

CAP theorem [GL02]

Consistency: every read receives the most recent write or
errors out

Availability: every request receives a response

Partition tolerance: tolerance of a storage system to failure of
a network partition (system continues to operate even if some
of the messages are dropped/delayed)

CAP theorem

AP: Available and Partition Tolerant
CP: Consistent and Partition Tolerant
CA: Not Partition Tolerant

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Data replication

Replication: multiple copies of the same data set on different
database servers

Main goals

High availability
Fault tolerance against the loss of a single database server
Increased read capacity
Increase data locality
Data copies for dedicated purposes (backup, disaster recovery,
. . .)

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Replication in MongoDB
Replica set

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

MongoDB Replication
Automatic failover

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Sharding
Data partioning in the NoSQL era

Challenges: Large data sets, high query rates, . . .

⇒ Horizontal scaling v.s. Vertical scaling

Sharding: a method for distributing data across multiple
machines

Data distribution that is nearly transparent to the application
Support deployments with very large data sets and high
throughput operations

⇒ Document-based databases: sharding data at the collection
level

⇒ Horizontal scaling: dynamic sharding (add/remove a server)

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Advantages of Sharding

Distribution of read and write operations

Horizontal scalability

Very suited to queries that include the shard key or the prefix
of a compound shard key

Storage Capacity

High Availability

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

MongoDB
Sharding

https://docs.mongodb.com/manual/sharding/

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Sharding
Routers and collections

https://docs.mongodb.com/manual/core/distributed-queries/

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Targeted Operations vs. Broadcast Operations

Targeted operations

Queries that include the shard key or the prefix of a compound
shard key
Queries routed to a specific shard or set of shards

Broadcast Operations

Queries broadcasted to all shards
Responses from all shards are merged

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Sharding strategies

Two sharding strategies

Hashed Sharding

Compute a hash of the shard key field’s value
Each chunk is assigned a range based on the hashed shard key
values

(+) Facilitates even data distribution, especially in data sets where
the shard key changes monotonically

(-) Range-based queries on the shard key are less likely to target a
single shard

Range Sharding

Divide data into ranges based on the shard key values
Each chunk is assigned a range based on the shard key values

(+) Range-based queries on the shard key
(-) Poorly considered shard keys can result in uneven distribution

of data

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Sharding strategies

Hashed Sharding

Ranged Sharding

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

MapReduce paradigm
Motivation

Massively parallel programs

Simple parallel programming model
Scalability
Fault tolerance

Moving programs not data !!

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

MapReduce framework

A process in two steps

A Map step : execution of a user provided map function
A Reduce step : execution of a user provided reduce function

Main advantages/drawbacks
(+) Make parallelism transparent to the programmer

Muliple instances of the map function are executed in parallel
Muliple instances of the reduce function are executed in
parallel

(+) Massively parallel model

Fault tolerance: failures have local effects
Horizontal scalability

(-) Suitable only for simple problems (highly parallelizable)
(-) Initialization cost

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

MapReduce framework

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Design of MapReduce programs

Map function

tuple at a time funcion
returns <key, value> pairs

Reduce function

Takes as input a paire <key, list(values)>

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

MongoDB MapReduce
Example

{ id: ObjectId(”50a8240b927d5d8b5891743c”),
cust id: ”abc123”,
ord date: new Date(”Oct 04, 2012”),
status: ’A’,
price: 25,
items: [{ sku: ”mmm”, qty: 5, price: 2.5 },
{ sku: ”nnn”, qty: 5, price: 2.5 }] }

Return the Total Price Per Customer

Calculate Order and Total Quantity with Average Quantity
Per Item

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

MongoDB MapReduce
Example

Return the Total Price Per Customer

db.orders.mapReduce(
function() {emit(this.cust id, this.price);},
function(keyCustId, valuesPrices)

{return Array.sum(valuesPrices)},
{ out: ”myResult” })

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

MongoDB MapReduce
Exampe

Calculate Order and Total Quantity with Average Quantity
Per Item

var mapFunction2 = function() {
for (var idx = 0; idx < this.items.length; idx++) {

var key = this.items[idx].sku;
var value = {

count: 1,
qty: this.items[idx].qty };

emit(key, value); } };

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

MongoDB MapReduce
Example

var reduceFunction2 = function(keySKU, countObjVals) {
reducedVal = { count: 0, qty: 0 };
for (var idx = 0; idx < countObjVals.length; idx++) {

reducedVal.count += countObjVals[idx].count;
reducedVal.qty += countObjVals[idx].qty; }

return reducedVal; };

var finalizeFunction2 = function (key, reducedVal) {
reducedVal.avg = reducedVal.qty/reducedVal.count;
return reducedVal; };

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Beyond MapReduce

Need to cover

More complex, multi-stages applications
Interactive ad-hoc queries

Limitations of preexisting technology

Lack of abstractions for leveraging distributed memory
Reusing intermediate results across multiple computations

Notion of RDD (Resilient Distributed Data)

High level operators
Distributed execution based on MapReduce
Notion of RDD (Resilient Distributed Datasets)

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Conclusions about the state of data management systems

⇒ Very active research and development field [AAA+22]

SQL-style APIs predominant to query and retrieve data
Execution over a large cluster: shared-nothing, scale-out
parallelism
Columnar storage: widely used in most commercial data
analytic platforms
Memory-based data management systems
Database systems offered as cloud services
Hybrid transactional/analytical processing (HTAP) systems
Modern database engine are based on sophisticated
optimization techniques: memory-optimized data structures,
modern compilation, code-generation, . . .
A new generation of data cleaning and data wrangling
technology

Emergence of data science: combines elements of data cleaning and
transformation, statistical analysis, data visualization, and ML techniques

New technical environment: notebooks, . . .

⇒ What can data management do for machine learning?Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

What can data management do for machine learning?

Minimize data movement

Avoid data duplication
Data inconsistency

⇒ Program shipping vs. Data shipping

Efficient access and manipulation of data

Data layout, buffer management, indexing, data partitioning,
parallel execution, . . .
Automatic query optimization
Metadata: schema information can help in modeling/data
validation

Predictions with data: declarative machine learning

Security

⇒ Machine learning in data management systems

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

What can data management do for machine learning?

Minimize data movement

Avoid data duplication
Data inconsistency

⇒ Program shipping vs. Data shipping

Efficient access and manipulation of data

Data layout, buffer management, indexing, data partitioning,
parallel execution, . . .
Automatic query optimization
Metadata: schema information can help in modeling/data
validation

Predictions with data: declarative machine learning

Security

⇒ Machine learning in data management systems

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

ML in DBMS
Some challenges

Abstractions: relational abstraction not enough

Access Patterns: understanding how does an ML algorithm
access data?
Sequentially, randomly, repeated scans

Automatic optimization: logical/physical optimization, cost
model, . . .

New Data Types: Images, video, models, how do we store
them and manage them?

Parallel and distributed execution

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

ML in DBMS
Two selected topics

ML system abstractions in data management system

Declarative predictive queries

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

ML abstractions in data analysis tasks

Descriptive analytics

Complex queries on a database system to extract aggregated
information: statistics for a collection of records
Data abstraction: relation
Data processing operators : relational algebra

Predictive analytics: study historical data in order to identify
trends and produce predictions for future events

Machine learning algorithms for regression, classification and
clustering
Data abstractions: matrix, vectors
Data processing operators: linear algebra
An iterative refinement process to minimize/maximize a given
objective function
Examples: linear/logistic regression, support vector machines
(SVM), k-means, . . .

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

ML abstractions in data system
Matrix representation

Representing large Vectors and Matrix as relations

Goal: matrix storage and partitioning in a parallel system
A(row number integer, vector numeric [])

A(row number integer, column number integer, value number)

⇒ Horizontal partitioning by the DBMS (hashing, round-robin, . . .)

Sparse vs. complete matrix

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

ML abstractions in data system
Matrix representation

Representing large Vectors and Matrix as relations

Goal: matrix storage and partitioning in a parallel system
A(row number integer, vector numeric [])

A(row number integer, column number integer, value number)

⇒ Horizontal partitioning by the DBMS (hashing, round-robin, . . .)

Sparse vs. complete matrix

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Basic matrix arithmetics

Addition of two matrix A and B of identical dimensions
SELECT A.row number, A.vector + B.vector

FROM A, B WHERE A.row number = B.row number;

⇒ A query optimizer is likely to choose a hash join for this query
(suitable for parallelization)

Multiplication of a matrix and a vector Av
SELECT 1, array accum(row number, vector*v) FROM A;

* operator can be implemented as an UDF to express a dot
product: ~x .−→y =

∑
i xiyi)

array accum(x,v) is a UDAF which returns an array (setting
position x to value v for each row of input)

⇒ Parallelization thanks to the Merge function of the UDAF
pattern

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Basic matrix arithmetics

Addition of two matrix A and B of identical dimensions
SELECT A.row number, A.vector + B.vector

FROM A, B WHERE A.row number = B.row number;

⇒ A query optimizer is likely to choose a hash join for this query
(suitable for parallelization)

Multiplication of a matrix and a vector Av
SELECT 1, array accum(row number, vector*v) FROM A;

* operator can be implemented as an UDF to express a dot
product: ~x .−→y =

∑
i xiyi)

array accum(x,v) is a UDAF which returns an array (setting
position x to value v for each row of input)

⇒ Parallelization thanks to the Merge function of the UDAF
pattern

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Basic matrix arithmetics

Addition of two matrix A and B of identical dimensions
SELECT A.row number, A.vector + B.vector

FROM A, B WHERE A.row number = B.row number;

⇒ A query optimizer is likely to choose a hash join for this query
(suitable for parallelization)

Multiplication of a matrix and a vector Av
SELECT 1, array accum(row number, vector*v) FROM A;

* operator can be implemented as an UDF to express a dot
product: ~x .−→y =

∑
i xiyi)

array accum(x,v) is a UDAF which returns an array (setting
position x to value v for each row of input)

⇒ Parallelization thanks to the Merge function of the UDAF
pattern

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Basic matrix arithmetics

Addition of two matrix A and B of identical dimensions
SELECT A.row number, A.vector + B.vector

FROM A, B WHERE A.row number = B.row number;

⇒ A query optimizer is likely to choose a hash join for this query
(suitable for parallelization)

Multiplication of a matrix and a vector Av
SELECT 1, array accum(row number, vector*v) FROM A;

* operator can be implemented as an UDF to express a dot
product: ~x .−→y =

∑
i xiyi)

array accum(x,v) is a UDAF which returns an array (setting
position x to value v for each row of input)

⇒ Parallelization thanks to the Merge function of the UDAF
pattern

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Basic matrix arithmetics

Matrix transpose (m × n))
SELECT S.col number, array accum(A.row number,

A.vector[S.col number]) FROM A, generate series(1,3) AS

S(col number) GROUP BY S.col number;

⇒ n copies of A are sent to the Group-By operator
⇒ Eager Group-by is useless
⇒ Parallelization thanks to the Merge function of the UDAF

pattern

Matrix product

Which storage better fits ?
A(row number integer, vector numeric [])

A(row number integer, column number integer, value

number)

SELECT A.row number, B.column number, SUM(A.value *

B.value) FROM A, B WHERE A.column number = B.row number

GROUP BY A.row number, B.column number

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Basic matrix arithmetics

Matrix transpose (m × n))
SELECT S.col number, array accum(A.row number,

A.vector[S.col number]) FROM A, generate series(1,3) AS

S(col number) GROUP BY S.col number;

⇒ n copies of A are sent to the Group-By operator

⇒ Eager Group-by is useless
⇒ Parallelization thanks to the Merge function of the UDAF

pattern

Matrix product

Which storage better fits ?
A(row number integer, vector numeric [])

A(row number integer, column number integer, value

number)

SELECT A.row number, B.column number, SUM(A.value *

B.value) FROM A, B WHERE A.column number = B.row number

GROUP BY A.row number, B.column number

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Basic matrix arithmetics

Matrix transpose (m × n))
SELECT S.col number, array accum(A.row number,

A.vector[S.col number]) FROM A, generate series(1,3) AS

S(col number) GROUP BY S.col number;

⇒ n copies of A are sent to the Group-By operator
⇒ Eager Group-by is useless

⇒ Parallelization thanks to the Merge function of the UDAF
pattern

Matrix product

Which storage better fits ?
A(row number integer, vector numeric [])

A(row number integer, column number integer, value

number)

SELECT A.row number, B.column number, SUM(A.value *

B.value) FROM A, B WHERE A.column number = B.row number

GROUP BY A.row number, B.column number

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Basic matrix arithmetics

Matrix transpose (m × n))
SELECT S.col number, array accum(A.row number,

A.vector[S.col number]) FROM A, generate series(1,3) AS

S(col number) GROUP BY S.col number;

⇒ n copies of A are sent to the Group-By operator
⇒ Eager Group-by is useless
⇒ Parallelization thanks to the Merge function of the UDAF

pattern

Matrix product

Which storage better fits ?
A(row number integer, vector numeric [])

A(row number integer, column number integer, value

number)

SELECT A.row number, B.column number, SUM(A.value *

B.value) FROM A, B WHERE A.column number = B.row number

GROUP BY A.row number, B.column number

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Basic matrix arithmetics

Matrix transpose (m × n))
SELECT S.col number, array accum(A.row number,

A.vector[S.col number]) FROM A, generate series(1,3) AS

S(col number) GROUP BY S.col number;

⇒ n copies of A are sent to the Group-By operator
⇒ Eager Group-by is useless
⇒ Parallelization thanks to the Merge function of the UDAF

pattern

Matrix product

Which storage better fits ?
A(row number integer, vector numeric [])

A(row number integer, column number integer, value

number)

SELECT A.row number, B.column number, SUM(A.value *

B.value) FROM A, B WHERE A.column number = B.row number

GROUP BY A.row number, B.column number

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Basic matrix arithmetics

Matrix transpose (m × n))
SELECT S.col number, array accum(A.row number,

A.vector[S.col number]) FROM A, generate series(1,3) AS

S(col number) GROUP BY S.col number;

⇒ n copies of A are sent to the Group-By operator
⇒ Eager Group-by is useless
⇒ Parallelization thanks to the Merge function of the UDAF

pattern

Matrix product

Which storage better fits ?
A(row number integer, vector numeric [])

A(row number integer, column number integer, value

number)

SELECT A.row number, B.column number, SUM(A.value *

B.value) FROM A, B WHERE A.column number = B.row number

GROUP BY A.row number, B.column number

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Beyond basic matrix arithmetics

Many ML techniques (mostly generalized linear models) can be
reduced to mathematical programming and there is a single solver
(Incremental Gradient Descent) that fits existing database system
abstractions (User Defined Aggregates) [MR21b]

Analytics Task Objective

Logistic Regression (LR)
P

i log(1 + exp(�yiw
T xi)) + µk~wk1

Classification (SVM)
P

i(1 � yiw
T xi)+ + µk~wk1

Recommendation (LMF)
P

(i,j)2⌦(LT
i Rj � Mij)

2 + µkL, Rk2
F

Labeling (CRF) [48]
P

k

hP
j wjFj(yk, xk) � log Z(xk)

i

Kalman Filters
PT

t=1 ||Cwt � f(yt)||22 + ||wt � Awt�1||22
Portfolio Optimization pT w + wT⌃w s.t. w 2 �

Figure 1: Bismarck in an RDBMS: (A) In contrast to existing in-RDBMS analytics tools that have separate code paths for
di↵erent analytics tasks, Bismarck provides a single framework to implement them, while possibly retaining similar interfaces.
(B) Example tasks handled by Bismarck. In Logistic Regression and Classification, we minimize the error of a predictor
plus a regularization term. In Recommendation, we find a low-rank approximation to a matrix M which is only observed on
a sparse sampling of its entries. This problem is not convex, but it can still be solved via IGD. In Labeling with Conditional
Random Fields, we maximize the weights associated with features (Fj) in the text to predict the labels. In Kalman Filters,
we fit noisy time series data. In quantitative finance, portfolios are optimized balancing risk (pT w) with expected returns
(wT⌃w); the allocations must lie in a simplex, �, i.e., � = {w 2 Rn | Pn

i=1 wi = 1} and wi � 0 for i = 1, . . . , n.

tecture that leverages this observation: we show that we can
implement these methods using the user-defined aggregate
features that are available inside every major RDBMS. To
support our point, we implement our architecture over Post-
greSQL and two commercial database systems. In turn, this
allows us to implement all convex data analysis techniques
that are available in current RDBMSes – and many next
generation techniques (see Figure 1). The code to add in a
new model can be as little as ten lines of C code, e.g., for
logistic regression.1

As with any generic architectural abstraction, a key ques-
tion is to understand how much performance overhead our
approach would incur. In the two commercial systems that
we investigate, we show that compared to a strawman user-
defined aggregate that computes no value, our approach has
between 5% (for simple tasks like regression) to 100% over-
head (for complex tasks like matrix factorization). What is
perhaps more surprising is that our approach is often much
faster than existing in-database analytic tools from commer-
cial vendors: our prototype implementations are in many
cases 2� 4x faster than existing approaches for simple tasks
– and for some newly added tasks such as matrix factoriza-
tion, orders of magnitude faster.

A second benefit of a unified in-database architecture is
that we can study the factors that impact performance and
optimize them in a way that applies across several analyt-
ics tasks. Our preliminary investigation revealed many such
optimization opportunities including data layout, compres-
sion, data ordering, and parallelism. Here, we focus on two
such factors that we discovered were important in our ini-
tial prototype: data clustering, i.e., how the data is ordered
on-disk, and parallelism on a single-node multicore system.

Although IGD will converge to an optimal solution on con-
vex programming problems no matter how the underlying
data is ordered, empirically some orders allow us to termi-
nate more quickly than others. We observe that inside an
RDBMS, data is often clustered for reasons unrelated to the
analysis task (e.g., to support e�cient query performance),
and running IGD through the data in the order that is stored

1
Not all data analysis problems are convex. Notable exceptions are

Apriori [9] and graph mining algorithms.

on disk can lead to considerable degradation in performance.
With this in mind, we describe a theoretical example that
characterizes some “bad” orders for IGDs and shows that
they are indeed likely inside an RDBMS. For example, if
one clusters the data for a classification task such that all
of the positive examples come before the negative examples,
the resulting convergence rate may be much slower than if
the data were randomly ordered, i.e., to reach the same dis-
tance to the optimal solution, more passes over the data are
needed if the data is examined by IGD in the clustered order
versus a random order. Our second technical contribution is
to describe the clustering phenomenon theoretically, and use
this insight to develop a simple approach to combat this. A
common approach in machine learning randomly permutes
the data with each pass. However, such random shu✏ing
may incur substantial computational overhead. Our method
obviates this overhead by shu✏ing the data only once before
the first pass. We implement and benchmark this approach
on all three RDBMSes that we study: empirically, we find
that across a broad range of models, while shu✏ing once
has a slightly slower convergence rate than shu✏ing on each
pass, the lack of expensive reshu✏ing allows us to simply run
more epochs in the same amount of time. Thus, shu✏ing
once has better overall performance than shu✏ing always.

We then study how to parallelize IGD in an RDBMS.
We first observe that recent work in the machine learn-
ing community allows us to parallelize IGD [52] in a way
that leverages the standard user-defined aggregation fea-
tures available in every RDBMS to do shared-nothing par-
allelism. We leverage this parallelization feature in a com-
mercial database and show that we can get almost linear
speed-ups. However, recent results in the machine learning
community have shown that these approaches may yield sub-
optimal runtime performance compared to approaches that
exploit shared-memory parallelism [29, 37]. This motivates
us to adapt approaches that exploit shared memory for use
inside an RDBMS. We focus on single-node multicore par-
allelism where shared memory is available. Although not in
the textbook description of an RDBMS, all three RDBMSes
we inspected allow us to allocate and manage some shared
memory (even providing interfaces to help manage the nec-

Unified implementation abstractions for in-data system ML:
GLADE, MADlib, Spark MLlib, . . .

Active research on support for Deep Learning over
DB-resident data

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Prediction queries [PSB+22]

Trained ML models are being deployed in a wide variety of
scenarios

High-value data in the enterprise is typically stored in
relational databases, data warehouses or data lakes

ML inference: prediction queries

⇒ Complex analytics queries that employ trained pipelines to
perform predictions over new data arriving in the
database/data lake

⇒ Prediction-specific logic implemented using data processing
operators (e.g., filters or joins)

⇒ Optimizations spanning data and ML operators in prediction
queries

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Prediction queries [PSB+22]

Trained ML models are being deployed in a wide variety of
scenarios

High-value data in the enterprise is typically stored in
relational databases, data warehouses or data lakes

ML inference: prediction queries

⇒ Complex analytics queries that employ trained pipelines to
perform predictions over new data arriving in the
database/data lake

⇒ Prediction-specific logic implemented using data processing
operators (e.g., filters or joins)

⇒ Optimizations spanning data and ML operators in prediction
queries

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Prediction queries
Example

Model to predict whether a patient is in high risk of
COVID-19 complications (covid risk.onnx)

Hospital data

Patient info
Blood test
Pulmonary test

Prediction query

Q: ”find asthma patients who are likely in the high-risk
COVID-19 group”

⇒ Prediction-specific logic: Join, Invoke M, Filter

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Prediction queries
Example

Model to predict whether a patient is in high risk of
COVID-19 complications (covid risk.onnx)

Hospital data

Patient info
Blood test
Pulmonary test

Prediction query

Q: ”find asthma patients who are likely in the high-risk
COVID-19 group”

⇒ Prediction-specific logic: Join, Invoke M, Filter

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Prediction queries
The predict operator

PREDICT
(

MODEL = model ,
DATA = object AS <tables alias>

)
WITH (<result set definition>)

Select d.*, p.Score From PREDICT(MODEL = @model, DATA = dbo.mytable

AS d) WITH (Score FLOAT) AS p;

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Prediction queries
The predict operator

PREDICT
(

MODEL = model ,
DATA = object AS <tables alias>

)
WITH (<result set definition>)

Select d.*, p.Score From PREDICT(MODEL = @model, DATA = dbo.mytable

AS d) WITH (Score FLOAT) AS p;

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Queries using the predict operator
Example

WITH data AS(
SELECT *
FROM patient info AS pi
JOIN pulmonary test AS pt ON pi.id=pt.id
JOIN blood test AS bt ON pt.id=bt.id);

SELECT d.id
FROM PREDICT(MODEL = covid risk.onnx,

DATA=data AS d)
WITH(risk of covid float) AS p
WHERE d.asthma = 1 AND p.risk of covid = ”high”;

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Queries using the predict operator
Example

WITH data AS(
SELECT *
FROM patient info AS pi
JOIN pulmonary test AS pt ON pi.id=pt.id
JOIN blood test AS bt ON pt.id=bt.id);

SELECT d.id
FROM PREDICT(MODEL = covid risk.onnx,

DATA=data AS d)
WITH(risk of covid float) AS p
WHERE d.asthma = 1 AND p.risk of covid = ”high”;

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Holistic optimization of prediction queries [PSB+22]

Unified Internal Representation (IR)

Relational algebra
Linear algebra
Other ML operators and data featurizers (e.g., decision trees,
categorical encoding, text featurization, . . .)

Arbitrary algorithms !!

Optimization

Logical optimizations
Logical-to-physical optimizations

Execution of optimized plans

Apache Spark or SQL Server (+ ONNX Runtime)

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Holistic optimization of prediction queries [PSB+22]

Unified Internal Representation (IR)

Relational algebra
Linear algebra
Other ML operators and data featurizers (e.g., decision trees,
categorical encoding, text featurization, . . .)

Arbitrary algorithms !!

Optimization

Logical optimizations
Logical-to-physical optimizations

Execution of optimized plans

Apache Spark or SQL Server (+ ONNX Runtime)

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

End-to-End optimization of prediction queries
Example

0.1

1

10

100

1000

10000

100000

operators # inputs # features % unused
features

tree nodes # trees avg tree
depth

tree-based models

Figure 1: Statistics for �500 traditional ML models in the
OpenML CC-18 benchmark [62]. The boxplots represent the
25th, median, and 75th percentile; the whiskers represent the
min and max. Y-axis is in logscale.

costly than an inference one, inference ends up being signi�cantly
more costly than training on aggregate. Cloud vendors state that
90% of the total cost of ML is on inference [31]. Therefore, optimiz-
ing inference is crucial for lowering operational costs.
Batch inference is often preferable or at least su�cient. On-
line inference is not a requirement for most enterprise applications,
especially after considering the infrastructure costs associated with
it. In 130 customer engagements at Microsoft, the requirements of
91% of them were captured by batch inference. An additional 6% (for
a total of 97%) was managed with batch inference at short intervals.
Hence our focus with Raven is on batch prediction queries.
Prediction queries in SQL. Input to Raven are prediction queries,
i.e., advanced analytics queries that process data residing in (local
or remote) �les or databases through various data transformation
operations and feed them into one or more trained pipelines. Two
main ways are used to express such queries: SQL and Python. In
this work, we consider the SQL syntax as adopted by SQL Server
o�erings (including Azure SQL DB and DW [52]), i.e., a �������
table-valued function (TVF) accepting as parameters a model (the
trained pipeline) and a table, as depicted in Fig. 2 (). Similar SQL-
based syntax is used by both Google BigQueryML [24] and Amazon
RedshiftML [7], and recent work can be used to translate prediction
queries from Python to SQL [5].
Traditional ML is most widely used. According to the latest
Kaggle survey [32] and an analysis of publicly available Python
notebooks [69], traditional ML algorithms, such as linear/logistic
regression and tree-based models (decision trees, random forests,
gradient boosting) are the most popular by a large margin. �80%
of the Kaggle responders use them, as opposed to 43% for neural
networks. Scikit-learn [67], which focuses on traditional ML, is the
most widely used ML library in both studies. Thus, while Raven
can execute queries including any model expressible in ONNX [60],
our current focus is on optimizing queries with traditional ML
operators.
Trained pipelines are complex and vary greatly. We studied
508 scikit-learn trained pipelines over 72 datasets from OpenML’s
CC18 benchmark suite [12]. Fig. 1 highlights the signi�cant vari-
ations across pipelines. Pipelines have a median of 21 inputs but
some receive more than 1000 inputs. After featurization, due to
categorical inputs, models have a median of 77 features but some

bmi BPM asthma… …

Scaler OHE

Concat

…

TreeClassifier

WITH data AS(
SELECT *
FROM patient_info AS pi
JOIN pulmonary_test AS pt ON pi.id=pt.id
JOIN blood_test AS bt ON pt.id=bt.id);

SELECT d.id
FROM PREDICT(MODEL = covid_risk.onnx,

DATA=data AS d)
WITH(risk_of_covid float) AS p
WHERE d.asthma = 1 AND

p.risk_of_covid = ”high”;

bmi BPM asthma… hyper-
tension

…

Scaler Onehot
Encoder (OHE)

Concat

OHE…

TreeClassifier

Raven
parser

patient_info
blood_test

pulmonary_test
σ

σCOVID_risk = ‘high’

Prediction query using the Unified IR

Trained pipeline

asthma = 1

Optimized query
Raven

optimizer

σCOVID_risk = ‘high’

π

patient_info
blood_test

pulmonary_test
σasthma = 1

π
π

Optimized
trained pipeline

+ +

Prediction query as expressed in T-SQL

Tr
ai

ne
d

pi
pe

lin
e

Run

1

2

3

4

5

Figure 2: Prediction query using SQL Server’s ������� state-
ment . It includes data processing operations (e.g., join,
one-hot encoding) and invokes a trained pipeline À. Raven:
Ã constructs the corresponding intermediate representa-
tion (IR); Õ optimizes the IR through cross-optimizations
and transformations; and Œ executes the �nal optimized
plan using Apache Spark or SQL Server (depending on where
the data is) and an ML runtime (if needed) over CPU or GPU.

models have more than 50" features. Likewise, while most tree-
based models (which account for 88% of all models) include less than
10 trees with a median depth of 11, some are extremely complex
with thousands of trees and depth. Each model consists of a large
number of operators with an average of 126, a median of 20, and a
min/max of 4/3560, as shown in Fig. 1. Similar model complexity
variations have been reported in production settings [4]. These
variations make di�erent transformations be bene�cial for each
model and dictate data-driven optimization strategies to determine
which rules to apply (§5).

Finally, to avoid over�tting in linear models, regularization tech-
niques (e.g., Lasso) [13] are often used during model training, which
end up creating zero weights. In tree-based models, features are
often left out during training due to correlations or insigni�cant
contributions. In the 508 OpenML models we analyzed, on average
46% of the model features remain unused during inference! This ob-
servation makes the model-projection pushdown rule particularly
e�ective, as we discuss in §4.1.

2.2 Raven
Running example. Consider a model that predicts whether a pa-
tient is in high risk of COVID-19 complications. This model is trained
over a large amount of data across several COVID-19 testing sites
and hospitals. The result of model training is the model pipeline " ,
shown in Fig. 2 (À). Along with the actual tree classi�er, it includes
pre-processing steps to prepare the data for inference. " is de-
ployed, and then a data analyst can use it in a prediction query % to
“�nd asthma patients who are likely in the high-risk COVID-19 group,”
depicted in Fig. 2 (). The analyst uses % to �nd such patients in a
speci�c hospital and to do so, % �rst joins patient_info with two

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Raven logical optimizations

Cross-optimizations

⇒ Predicate-based model pruning
⇒ Model-projection pushdown

Data-induced optimizations

Using data statistics to optimize ML models of prediction
queries: pruning subtrees based on data distribution
Sharding/data partioning: Compiling optimized model for each
partition

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

age BPM asthma

Scaler OnehotEncoder(OHE)

Concat

hypertension

OHE

m

Tree Classifier

f0, f1 f2, f3 f4, f5

‘high’ ‘low’

F[3]=1

F[0]>60 F[1]>1

F[4]=0 F[5]=1 F[2]=1 F[3]=1

‘high’ ‘low’ ‘high’ ‘low’ ‘high’ ‘low’

age BPM Const=1

Scaler OHE

Concat

hypertension

OHE

m

Tree Classifier

f0, f1 f2, f3 f4, f5

Tree Classifier

age BPM Const=1

Scaler OHE

Concat

hypertension

OHE

m

f0, f1 f2, f3 f4, f5

age BPM Const=1

Scaler OHE

hypertension

OHE

m’

Tree Classifier

f0, f1 f2, f3 f4, f5
FE [0]

Concat

age BPM Const=1

Scaler OHE

Concat

hypertension

OHE

m’

Tree Classifier

f0, f1 f2, f3 f4, f5

‘high’ ‘low’

F[0]>60

F[1]=0 F[2]=1

‘high’ ‘low’

FeatureExtractor(FE)[0,4,5]

FE [None] FE [0,1]

nuf

age

Scaler

Concat

hypertension

OHE

m’

Tree Classifier

f0 f4, f5

F = [f0, f1, f2, f3, f4, f5] F = [f0, f1, f2, f3, f4, f5] F = [f0, f1, f2, f3, f4, f5]

F = [f0, f4, f5]

‘high’ ‘low’

F[3]=1

F[0]>60 F[1]>1

F[4]=0 F[5]=1 F[2]=1 F[3]=1

‘high’ ‘low’ ‘high’ ‘low’ ‘high’ ‘low’ ‘high’ ‘low’

F[3]=1

F[0]>60 F[1]>1

F[4]=0 F[5]=1 F[2]=1 F[3]=1

‘high’ ‘low’ ‘high’ ‘low’ ‘high’ ‘low’

x xx
x

F = [f0, f4, f5]F = [f0, f4, f5]

f0 f4, f5

‘high’ ‘low’

F[0]>60

F[1]=0 F[2]=1

‘high’ ‘low’ ‘high’ ‘low’

F[0]>60

F[1]=0 F[2]=1

‘high’ ‘low’

PushdownFE

True False

PushdownFE

asthma=1 πage, BPM, asthma, hypertension… age, BPM, asthma, hypertensionπ… π age, BPM, hypertension…

π age, BPM, hypertension… π age, BPM, hypertension… πage, BPM, hypertension…

σ

Figure 3: Cross-optimization steps for our running example (we omit some data operators from the IR): predicate-based model
pruning (–Ã) and model-projection pushdown (Õ–œ). We use gray and orange to highlight the changes in the IR at each step.
as similar in spirit to sideways information passing at compile
time [11]. Below we describe one optimization from each category.
Fig. 3 shows several versions of the IR when applying the two
optimizations on the prediction query of Fig. 2 ().

We �rst introduced the two optimizations below in [35], sup-
porting only models with a single linear regression or decision tree
operator. We are expanding these optimizations here in two main
ways: (i) we support a much wider range of traditional ML opera-
tors, including all common linear and tree-based models (decision
trees, random forests, gradient boosting) and featurizers, covering
all operators present in the hundreds of OpenML pipelines we stud-
ied in §2 (for comparison, none of the OpenML operators were
supported in [35]); and (ii) we support arbitrary ONNX models
instead of single operators. A manual approach as in [35] could not
handle this level of complexity: an actual optimizer is required to
traverse the operator tree and apply the optimizations, propagating
them through featurizers and other operators.
Predicate-based model pruning. Given a prediction query % , this
data-to-model optimization identi�es data predicates in % (from
the ����� clause of the query) and passes them to the trained
pipelines in % to simplify them, resulting in an optimized prediction
query % 0. The bene�t of this optimization is twofold: (i) it may
reduce the number of inputs to the trained pipeline (if an input is a
known constant, we do not need to provide it to trained pipeline at
runtime); and (ii) it reduces the complexity of the models, e.g., by
pruning tree-based models or statically pre-computing parts of the
ML operations (e.g., multiplications in linear models).

For each trained pipeline " of the query, the algorithm proceeds
in two steps:
Step 1. It collects " ’s inputs that participate in predicates. For each
equality predicate, it replaces the corresponding model input with
a constant node and adds a projection to prevent that input from
reaching the model. This projection can then be pushed down by
the relational optimizer to completely avoid scanning that column—
with su�cient predicates even full table scans can be avoided. It also
annotates with predicate information the model inputs correspond-
ing to range predicates. In Fig. 3 (À), given asthma=1, the algorithm
replaces the asthma input with a constant node and removes the
corresponding data column from the project operator.
Step 2. It passes the equality/range predicate information through
the pre-processing/featurization operators of " (e.g., Scaler, One-
HotEncoder, Concat), updating the predicate information as needed.
Once it reaches a tree-based model (e.g., decision tree, random for-
est, gradient boosting), it uses this information to prune branches
of each tree in the model.

In Fig. 3 (Ã), predicate asthma=1 becomes [0, 1] when
pushed through the OneHotEncoder for the two categories
[is_not_asthma_patient, is_asthma_patient]. Similarly, a constant
=2 is updated to (2>=BC0=C � > 5 5 B4C) ⇥ B20;4 when pushed through
a Scaler. Moreover, TreeClassifier’s root and right branch were
completely pruned based on asthma=1. It can also leverage range
predicates, e.g., with age<30, it can further prune the right branch
of the tree in Fig. 3 (Õ).

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Logical-to-physical optimizations

Transformations for Runtime Selection

MLtoSQL: turns ML operators to SQL statements

⇒ . Reduce/eliminate the invocation of ML runtime: avoiding
initialization costs and data conversions/copies between the
relational and ML engines

⇒ Enables more extensive relational optimizations in the DBMS

MLtoDNN: transforms traditional ML operators to equivalent
(deep) neural networks (DNN)

Data-driven optimizations

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

MLtoSQL

Linear models and scaling operators →
multiplication/addition/subtraction operators

Tree-based models and encoding operators → case statements
CASE WHEN F[0] > 60 THEN (

CASE WHEN F[1] = 0 THEN 1 ELSE 0 END) ELSE (

CASE WHEN F[2] = 1 THEN 1 ELSE 0 END) END

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

Conclusion

ML is moving to a pervasive technology

ML models are used by expert developers working within large
organizations

Next wave of ML systems: allow a larger amount of people,
potentially without coding skills, to perform the same tasks

⇒ Needs for declarative interfaces

Generations data management (but also compiler, operating
systems, software engineering) work may inspire new
foundational questions

Challenging issues from the data management perspective

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

References I

Daniel Abadi, Anastasia Ailamaki, David Andersen, Peter
Bailis, Magdalena Balazinska, Philip A. Bernstein, Peter
Boncz, Surajit Chaudhuri, Alvin Cheung, Anhai Doan, Luna
Dong, Michael J. Franklin, Juliana Freire, Alon Halevy,
Joseph M. Hellerstein, Stratos Idreos, Donald Kossmann, Tim
Kraska, Sailesh Krishnamurthy, Volker Markl, Sergey Melnik,
Tova Milo, C. Mohan, Thomas Neumann, Beng Chin Ooi,
Fatma Ozcan, Jignesh Patel, Andrew Pavlo, Raluca Popa,
Raghu Ramakrishnan, Christopher Re, Michael Stonebraker,
and Dan Suciu, The seattle report on database research,
Commun. ACM 65 (2022), no. 8, 72?79.

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

References II

Sara Cohen, User-defined aggregate functions: Bridging theory
and practice, SIGMOD ’06 (New York, NY, USA), ACM,
2006, pp. 49–60.

Seth Gilbert and Nancy Lynch, Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant web
services, SIGACT News 33 (2002), no. 2, 51–59.

César A. Galindo-Legaria and Milind Joshi, Orthogonal
optimization of subqueries and aggregation, ACM SIGMOD
Conference, 2001.

Piero Molino and Christopher Ré, Declarative machine learning
systems, Commun. ACM 65 (2021), no. 1, 42?49.

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

References III

, Declarative machine learning systems, Commun.
ACM 65 (2021), no. 1, 42–49.

Kwanghyun Park, Karla Saur, Dalitso Banda, Rathijit Sen,
Matteo Interlandi, and Konstantinos Karanasos, End-to-end
optimization of machine learning prediction queries,
Proceedings of the 2022 International Conference on
Management of Data (New York, NY, USA), SIGMOD ’22,
Association for Computing Machinery, 2022, p. 587–601.

Karthik Ramachandra, Kwanghyun Park, K. Venkatesh Emani,
Alan Halverson, César Galindo-Legaria, and Conor
Cunningham, Froid: Optimization of imperative programs in a
relational database, Proc. VLDB Endow. 11 (2017), no. 4,
432–444.

Farouk Toumani Data management in the era of bigdata and machine learning

Data management: core concepts and technologies
The era of big data

Machine learning in data management systems

References IV

Varun Simhadri, Karthik Ramachandra, Arun Chaitanya,
Ravindra Guravannavar, and S. Sudarshan, Decorrelation of
user defined function invocations in queries, IEEE 30th
International Conference on Data Engineering, Chicago, ICDE
2014, IL, USA, March 31 - April 4, 2014 (Isabel F. Cruz, Elena
Ferrari, Yufei Tao, Elisa Bertino, and Goce Trajcevski, eds.),
IEEE Computer Society, 2014, pp. 532–543.

Weipeng P. Yan and Per-Åke Larson, Eager aggregation and
lazy aggregation, Very Large Data Bases Conference, 1995.

Farouk Toumani Data management in the era of bigdata and machine learning

	Data management: core concepts and technologies
	The era of big data
	Machine learning in data management systems

